1 Valid Partial Correctness Assertions

In the last lecture, we introduced the concept of a partial correctness assertion,

$$
\{A\} p\{B\}
$$

where A is a precondition or assertion, p is a program, and B is a postcondition. This PCA means that if program P is started in any state which satisfies A , then when and if p halts, the halting state satisfies B .

Formally, we say $\models\{A\} p\{B\},(\{A\} p\{B\}$ is valid $)$, if for all $\sigma, \tau \in \Sigma$ and for all interpretations, I,

$$
\left(\sigma \models^{I} A \wedge(\sigma, \tau) \in \mathcal{R} \llbracket \mathrm{p} \rrbracket\right) \Rightarrow \tau \models^{\mathcal{I}} \mathcal{B}
$$

In 1969, Hoare introduced the following proof system for deriving valid PCA's:

Assignment Axiom:

$$
\overline{\{A[t / x]\} x:=t\{A\}}
$$

Example:

$$
\{1+2=3\} x:=1+2\{x=3\}
$$

Composition Rule:

$$
\frac{\{A\} p\{B\},\{B\} q\{C\}}{\{A\} \mathrm{p} ; \mathrm{q}\{\{C\}}
$$

Conditional Rule:

$$
\frac{\{A \wedge b\} p\{C\},\{A \wedge \bar{b}\} q\{C\}}{\{A\} \text { if } b \text { then } p \text { else } q\{C\}}
$$

While Rule:

$$
\frac{\{b \wedge A\} p\{A\}}{\{A\} \text { while } b \text { do } p\{A \wedge \bar{b}\}}
$$

Weakening Rule:

$$
\frac{A \rightarrow A^{\prime},\left\{A^{\prime}\right\} p\left\{B^{\prime}\right\}, B^{\prime} \rightarrow B}{\{A\} p\{B\}}
$$

Definition: We say $\vdash\{A\} p\{B\},(\{A\} p\{B\}$ is derivable $)$, if there is a proof tree for $\{A\} p\{B\}$ using the proof system defined above and the theory of the domain of computation (in our case, the theory of the natural numbers).

Claim: The proof system defined above is both sound ($\vdash\{A\} p\{B\} \Rightarrow \vDash\{A\} p\{B\}$), and complete ($\vDash\{A\} p\{B\} \Rightarrow \vdash\{A\} p\{B\})$ for the theory of the natural numbers.

The proof of soundness is straightforward, while the proof of completeness is attributed to Cook.

2 An Application of Hoare's Proof System in Program Verification

Consider the following program, p :
while ($\mathrm{y}!=0$)
\{
$\mathrm{z}:=\mathrm{x}(\bmod \mathrm{y}) ;$
$\mathrm{x}:=\mathrm{y}$;
$y:=z ;$
\}
We wish to verify that this correctly computes the GCD of x and y , assuming x and y are not both zero. That is,

$$
\vdash\{x=i \wedge y=j \wedge \neg(i=0 \wedge j=0)\} p\{x=\operatorname{gcd}(i, j)\}
$$

Proof: By the weakening rule, it suffices to show:

$$
\{\operatorname{gcd}(x, y)=\operatorname{gcd}(i, j) \wedge \neg(x=0 \wedge y=0)\} p\{x=\operatorname{gcd}(i, j)\}
$$

The following PCAs are easily verified with a dash of number theory:

$$
\begin{gathered}
\{g c d(x, y)=g c d(i, j) \wedge \neg(y=0)\} z:=x(\bmod y)\{g c d(y, z)=\operatorname{gcd}(i, j)\} \\
\{g c d(y, z)=\operatorname{gcd}(i, j)\} x:=y\{\operatorname{gcd}(x, z)=\operatorname{gcd}(i, j)\} \\
\{g c d(x, z)=\operatorname{gcd}(i, j)\} y:=z\{\operatorname{gcd}(x, y)=\operatorname{gcd}(i, j)\}
\end{gathered}
$$

So, repeatedly applying the composition rule, we have:

$$
\{g c d(x, y)=\operatorname{gcd}(i, j) \wedge \neg(y=0)\}\{z:=x(\bmod y) ; x:=y ; y:=z ;\}\{\operatorname{gcd}(x, y)=\operatorname{gcd}(i, j)\}
$$

Finally, the while rule yields:

$$
\{g c d(x, y)=\operatorname{gcd}(i, j) \wedge \neg(y=0)\} p\{g c d(x, y)=\operatorname{gcd}(i, j) \wedge y=0\}
$$

Since $\operatorname{gcd}(x, 0)=x$, the weakening rule now allows us to make the desired conclusion.

3 Relational Semantics

As we saw in the previous lecture, programs can be interpreted as sets of pairs, each pair consisting of an input state and an output state. If Σ is the set of possible states and p is a program, then $\mathcal{R} \llbracket p \rrbracket \subseteq \Sigma \times \Sigma$ is a binary relation which represents the meaning of p in relational semantics. We can use either of the following (equivalent) definitions for $\mathcal{R} \llbracket p \rrbracket$:

$$
\mathcal{R} \llbracket p \rrbracket \stackrel{\text { def }}{=}\{(\sigma, \tau) \mid \tau=\mathcal{C} \llbracket p \rrbracket \sigma\}, 1 \text { def } \begin{cases}= & \{(\sigma, \tau) \mid\langle p, \sigma\rangle \rightarrow \tau\}\end{cases}
$$

We also defined \mathcal{R} on boolean values b as

$$
\mathcal{R} \llbracket b \rrbracket \stackrel{\text { def }}{=}\{(\sigma, \sigma) \mid \sigma \models b\}
$$

We can now define some basic operations on these relations.

$$
\begin{aligned}
\mathcal{R} \circ \mathcal{S} & \stackrel{\text { def }}{=} \\
\mathcal{R} \cup \mathcal{S} & \stackrel{\text { def }}{=}\{(\sigma, \rho) \mid \exists \tau \text { such that }(\sigma, \tau) \in \mathcal{R} \text { and }(\tau, \rho) \in \mathcal{S}\} \\
\mathcal{R}^{*} & \stackrel{\text { def }}{=} \\
& \bigcup_{n \geq 0} \mathcal{R}^{n}
\end{aligned}
$$

where \mathcal{R}^{n} is defined inductively as

$$
\begin{aligned}
\mathcal{R}^{0} & =\{(\sigma, \sigma) \mid \sigma \in \Sigma\} \\
\mathcal{R}^{n+1} & =\mathcal{R} \circ \mathcal{R}^{n}
\end{aligned}
$$

Using these operations on relations, we can define the meaning of three operations on programs: composition, non-deterministic choice, and interation.

$$
\begin{array}{rll}
\mathcal{R} \llbracket p ; q \rrbracket & \stackrel{\text { def }}{=} & \mathcal{R} \llbracket p \rrbracket \circ \mathcal{R} \llbracket q \rrbracket \\
\mathcal{R} \llbracket p+q \rrbracket & \stackrel{\text { def }}{=} & \mathcal{R} \llbracket p \rrbracket \cup \mathcal{R} \llbracket q \rrbracket \\
\mathcal{R} \llbracket p^{*} \rrbracket & \stackrel{\text { def }}{=} & R \llbracket p \rrbracket^{*}
\end{array}
$$

Note that we can now give simple interpretations to our language constructs, including while. For example,

$$
\begin{aligned}
\mathcal{R} \llbracket \text { if } b \text { then } p \text { else } q \rrbracket & =\mathcal{R} \llbracket(b ; p)+(\bar{b} ; q) \rrbracket \\
\mathcal{R} \llbracket \text { while } b \text { do } p \rrbracket & =\mathcal{R} \llbracket(b ; p)^{*} ; \bar{b} \rrbracket
\end{aligned}
$$

So what we have now is a set of regular operators. Those equations which are true as regular expressions, such as $(p+q)^{*}=\left(p^{*} q\right)^{*} p^{*}$ and $p(q p)^{*}=(p q)^{*} p$, are exactly those expressions which are true for our binary relations.

