
CS611 Lecture 21 Weakest Preconditions Friday, the thirteenth of October, 2000
Scribe: Reba Schuller and Tom Wexler Lecturer: Dexter Kozen

1 Valid Partial Correctness Assertions

In the last lecture, we introduced the concept of a partial correctness assertion,

{A}p{B}

where A is a precondition or assertion, p is a program, and B is a postcondition. This PCA means that if
program P is started in any state which satisfies A, then when and if p halts, the halting state satisfies B.

Formally, we say |= {A}p{B}, ({A}p{B} is valid), if for all σ, τ ∈ Σ and for all interpretations, I,

(σ |=I A ∧ (σ, τ) ∈ R[[p]]) ⇒ τ |=I B

In 1969, Hoare introduced the following proof system for deriving valid PCA’s:

Assignment Axiom:

{A[t/x]}x := t{A}

Example:
{1 + 2 = 3} x := 1 + 2 {x = 3}

Composition Rule:

{A}p{B}, {B}q{C}
{A}p; q{{C}

Conditional Rule:

{A ∧ b}p{C}, {A ∧ b̄}q{C}
{A}if b then p else q{C}

While Rule:

{b ∧ A}p{A}
{A}while b do p{A ∧ b̄}

Weakening Rule:

A → A′, {A′}p{B′}, B′ → B

{A}p{B}

Definition: We say 
 {A}p{B}, ({A}p{B} is derivable), if there is a proof tree for {A}p{B} using the
proof system defined above and the theory of the domain of computation (in our case, the theory of the
natural numbers).

Claim: The proof system defined above is both sound ( 
 {A}p{B} ⇒ |= {A}p{B} ), and complete (
|= {A}p{B} ⇒ 
 {A}p{B} ) for the theory of the natural numbers.

The proof of soundness is straightforward, while the proof of completeness is attributed to Cook.
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2 An Application of Hoare’s Proof System in Program Verification

Consider the following program, p:

while (y != 0)
{

z := x(mod y);
x := y;
y := z;

}

We wish to verify that this correctly computes the GCD of x and y, assuming x and y are not both zero.
That is,


 {x = i ∧ y = j ∧ ¬(i = 0 ∧ j = 0)} p {x = gcd(i, j)}

Proof: By the weakening rule, it suffices to show:

{gcd(x, y) = gcd(i, j) ∧ ¬(x = 0 ∧ y = 0)} p {x = gcd(i, j)}
The following PCAs are easily verified with a dash of number theory:

{gcd(x, y) = gcd(i, j) ∧ ¬(y = 0)} z := x(mod y) {gcd(y, z) = gcd(i, j)}
{gcd(y, z) = gcd(i, j)} x := y {gcd(x, z) = gcd(i, j) }
{gcd(x, z) = gcd(i, j)} y := z {gcd(x, y) = gcd(i, j)}

So, repeatedly applying the composition rule, we have:

{gcd(x, y) = gcd(i, j) ∧ ¬(y = 0)} {z := x(mody); x := y; y := z; } {gcd(x, y) = gcd(i, j) }
Finally, the while rule yields:

{gcd(x, y) = gcd(i, j) ∧ ¬(y = 0)} p {gcd(x, y) = gcd(i, j) ∧ y = 0}
Since gcd(x, 0) = x, the weakening rule now allows us to make the desired conclusion.

3 Relational Semantics

As we saw in the previous lecture, programs can be interpreted as sets of pairs, each pair consisting of an
input state and an output state. If Σ is the set of possible states and p is a program, then R[[p]] ⊆ Σ×Σ is a
binary relation which represents the meaning of p in relational semantics. We can use either of the following
(equivalent) definitions for R[[p]]:

R[[p]]
def
= {(σ, τ)|τ = C[[p]]σ}

def
= {(σ, τ)|〈p, σ〉 → τ}

We also defined R on boolean values b as

R[[b]]
def
= {(σ, σ)|σ |= b}

We can now define some basic operations on these relations.
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R ◦ S def
= {(σ, ρ)|∃τ such that (σ, τ) ∈ R and (τ, ρ) ∈ S}

R ∪ S def
= {(σ, ρ)|(σ, ρ) ∈ R or (σ, ρ) ∈ S}

R∗ def
=

⋃

n≥0

Rn

where Rn is defined inductively as

R0 = {(σ, σ)|σ ∈ Σ}
Rn+1 = R ◦Rn

Using these operations on relations, we can define the meaning of three operations on programs: compo-
sition, non-deterministic choice, and interation.

R[[p; q]]
def
= R[[p]] ◦ R[[q]]

R[[p + q]]
def
= R[[p]] ∪R[[q]]

R[[p∗]]
def
= R[[p]]∗

Note that we can now give simple interpretations to our language constructs, including while. For example,

R[[ if b then p else q]] = R[[(b; p) + (b; q)]]
R[[ while b do p]] = R[[(b; p)∗; b]]

So what we have now is a set of regular operators. Those equations which are true as regular expressions,
such as (p+ q)∗ = (p∗q)∗p∗ and p(qp)∗ = (pq)∗p, are exactly those expressions which are true for our binary
relations.
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