CS611 Lecture 21 Weakest Preconditions Friday, the thirteenth of October, 2000

Scribe: Reba Schuller and Tom Wexler Lecturer: Dexter Kozen

1 Valid Partial Correctness Assertions
In the last lecture, we introduced the concept of a partial correctness assertion,
{A}p{B}

where A is a precondition or assertion, p is a program, and B is a postcondition. This PCA means that if
program P is started in any state which satisfies A, then when and if p halts, the halting state satisfies B.

Formally, we say = {A}p{B}, ({A}p{B} is valid), if for all 0,7 € X and for all interpretations, I,
(c =LA A (0,7) €R[p]) = 7= B
In 1969, Hoare introduced the following proof system for deriving valid PCA’s:

Assignment Axiom:

{Alt/a]}z = t{A}

Example:
{1+2=3}z:=1+2{x=3}

Composition Rule:

{A}p{B},{B}¢{C}
{A}p;q{{C}

Conditional Rule:

{AnD}p{C}, {AND}e{C}
{A}if b thenp else ¢{C}

While Rule:

{on Ajp{A}
{A}whilebdo p{A A b}

Weakening Rule:
A— A {Ap{B'}, B'— B
{A}p{B}

Definition: We say - {A}p{B}, ({A}p{B} is derivable), if there is a proof tree for {A}p{B} using the
proof system defined above and the theory of the domain of computation (in our case, the theory of the
natural numbers).

Claim: The proof system defined above is both sound ( F {A}p{B} = E {A}p{B} ), and complete (
E {A}p{B} =+ {A}p{B} ) for the theory of the natural numbers.

The proof of soundness is straightforward, while the proof of completeness is attributed to Cook.



2 An Application of Hoare's Proof System in Program Verification
Consider the following program, p:

while (y !=0)
{

(mod y);

Z:=X
X:1=y
yi=z

)
)

We wish to verify that this correctly computes the GCD of x and y, assuming x and y are not both zero.
That is,

F{r=iAy=7A~(i=0Aj=0)}p{z=gecd(i,j)}

Proof: By the weakening rule, it suffices to show:
{gcd(z,y) = ged(i, j) A ~(z =0 Ay = 0)} p {z = ged(i, j) }
The following PCAs are easily verified with a dash of number theory:
{ged(z,y) = ged(i, j) A ~(y = 0)} 2z := z(mod y) {ged(y, 2) = ged(i, j)}

{gcd(y, z) = ged(i,5)} ==y {ged(x, 2) = ged(i, j) }

{gcd(x, z) = ged(i, §)} y == =z {ged(x, y) = ged(i, j)}
So, repeatedly applying the composition rule, we have:

{gcd(x,y) = ged(i, j) A =(y = 0)} {z := z(mody); x :=y; y := 2z} {ged(z,y) = ged(i, ) }
Finally, the while rule yields:
{gcd(x,y) = ged(i, ) A =(y = 0)} p {ged(z,y) = ged(i, j) Ny = 0}

Since ged(x,0) = x, the weakening rule now allows us to make the desired conclusion.

3 Relational Semantics

As we saw in the previous lecture, programs can be interpreted as sets of pairs, each pair consisting of an
input state and an output state. If 3 is the set of possible states and p is a program, then R[p] C X x X is a
binary relation which represents the meaning of p in relational semantics. We can use either of the following
(equivalent) definitions for R[p]:

Rlpl = Alo,7)r =Clplo}
= A{le1)lp, o) = 7}

We also defined R on boolean values b as

def

RIb] = {(0,0)|o = b}

We can now define some basic operations on these relations.



RoS = {(o,p)|37 such that (o,7) € R and (7, p) € S}
RUS “ {(0.p)l(0,p) €R o1 (0,p) € S}
e Y YR
n>0

where R"™ is defined inductively as

R® = {(o,0)lc €%}
Rn—‘rl — RORTL

Using these operations on relations, we can define the meaning of three operations on programs: compo-
sition, non-deterministic choice, and interation.

Rlpiadl < RploRld]
Rlp+d] = RIJURI]
Rl < R[p]*

Note that we can now give simple interpretations to our language constructs, including while. For example,

R[if bthen pelse g = R[(b;p)+ (b;q)]
R[ while bdo p] = R[(b;p)*;b]
So what we have now is a set of regular operators. Those equations which are true as regular expressions,

such as (p+q)* = (p*q)*p* and p(gp)* = (pq)*p, are exactly those expressions which are true for our binary
relations.



