
CS611 Lecture 2 The Large-Step Semantics of IMP 8/27/00
Scribe: Daniel Marques and Vicky Weissman Lecturer: Andrew Myers

1 IMP in further details

1.1 A Review of IMP’s Syntax

Given n ∈ integers, X ∈ Loc, and op ∈ {+, -, *},

a ::= n | X | a0 op a1

b ::= true | false | ¬b | b0 ∧ b1 | b0 ∨ b1

c ::= skip | X := a | if b then c0 else c1 | while b do c | c0; c1

1.2 Evaluation Rules

Evaluation rules can be one of three types:

〈a, σ〉 ⇓ n, where n is an integer
〈b, σ〉 ⇓ t, where t is a truth value
〈c, σ〉 ⇓ σ′

The evaluation rules for arithmetic expressions are :

〈n, σ〉 ⇓ n
〈X, σ〉 ⇓ σ(X)

〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 op a1, σ〉 ⇓ n where n = n0 op n1

The evaluation rules for boolean expressions are:

〈true, σ〉 ⇓ true
〈false, σ〉 ⇓ false
〈b, σ〉 ⇓ t

〈¬b, σ〉 ⇓ t′ where t′ = t̄ (mathematical negation)

〈b0, σ〉 ⇓ true 〈b1, σ〉 ⇓ true
〈b0 ∧ b1, σ〉 ⇓ true

With the false case, it’s more complicated, because the following two rules do not specify an order of eval-
uation:

〈b0, σ〉 ⇓ false
〈b0 ∧ b1, σ〉 ⇓ false

〈b1, σ〉 ⇓ false
〈b0 ∧ b1, σ〉 ⇓ false

To implement ∧ in a short-circuit manner, we use the following set of rules:

〈b0, σ〉 ⇓ false
〈b0 ∧ b1, σ〉 ⇓ false

〈b0, σ〉 ⇓ true 〈b1, σ〉 ⇓ false
〈b0 ∧ b1, σ〉 ⇓ false

1

In IMP, these alternative sets of rules define the same semantics, because boolean expressions do not
have side effects. In most imperative languages, however, the rules would define different semantics.

The evaluation rules for IMP’s commands are:

〈skip, σ〉 ⇓ σ

〈a, σ〉 ⇓ n

〈X := a, σ〉 ⇓ σ [X �→ n]
〈c0, σ〉 ⇓ σ′′ 〈c1, σ′′〉 ⇓ σ′

〈c0; c1, σ〉 ⇓ σ′

〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′
〈b, σ〉 ⇓ false 〈c1, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

〈b, σ〉 ⇓ false
〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ true 〈c;while b do c, σ〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

2 Using Semantics to Prove Properties of IMP

2.1 The Notion of a Proof

We have been attempting to define when 〈c, σ〉 ⇓ σ′ holds true, i.e. all cases where a command c, executed
in σ, results in σ′. We can view this configuration as the triple, (c, σ, σ′). We would then like to determine
if a particular triple (or subset of the set of all such triples) follows from the rules of our language. If we can
prove that, we know that c executed in σ will indeed result in σ′.

2.2 Using a Proof Tree

In section 1.2, we described all the evaluation rules used to determine the behavior of IMP programs. We
will now use those rules to prove that specific commands will have specific results.
Applying a rule to a specific case results in a rule instance — we substitute actual values (or variables)

for the meta-variables in the rule. For each of the premises, p, of our rule instance, we attempt to make
another rule instance where the conclusion of this new instance is p. We continue to do this until our premises
are axioms of the language. If we are successful, the resulting application of rules is called a proof tree.

For example, given the rule:

〈b, σ〉 ⇓ t

〈¬b, σ〉 ⇓ t′ where t′ = t̄ (mathematical negation)

we can construct the two rule-instances:

〈false, σ〉 ⇓ false
〈¬false, σ〉 ⇓ true and

〈false, σ〉 ⇓ true
〈¬false, σ〉 ⇓ false.

The first one is a proof of program behavior, because its premise is an axiom. The second is a valid
rule instance, but it is not part of any proof, because no rule (or chain of rules) could have its meta-variables
substituted for and conclude with 〈false, σ〉 ⇓ true.

2.3 Execution As Proof

An execution of a command in a state, 〈c, σ〉 ⇓ σ′ is legal only if we can prove that behavior. Because our
method of proof is a proof tree where every step is the application of an inference rule, a legal execution is

2

a depth-first walk of a proof tree.
In the following proof tree, these substitutions of actual variables for meta-variables have been made:

b← x < y
c0 ← x := 0
c1 ← skip
σ ← [x �→ 1, y �→ 2]
σ′ ← [x �→ 0, y �→ 2]

〈x, [x �→ 1, . . .]〉 ⇓ 1 〈y, [. . . , y �→ 2]〉 ⇓ 2
〈x < y, [x �→ 1, y �→ 2]〉 ⇓ true

〈0, [x �→ 1, . . .]〉 ⇓ 0
〈x := 0, [x �→ 1, . . .]〉 ⇓ [x �→ 0, y �→ 2]

〈if x < y then x := 0 else skip, [x �→ 1, y �→ 2]〉 ⇓ [x �→ 0, y �→ 2]

2.4 Non-terminating Programs

A depth-first walk down the proof tree corresponds to an interpreter running our IMP program. As long
as it is always able to choose the right rule, given the current configuration, our interpreter will behave as
expected. Of course, it may never terminate.

Example: prove that the program while true do skip will never terminate.

Proof by contradiction.
Assume ∃σ′ s.t. 〈while true do skip, σ〉 ⇓ σ′

Then we should be able to construct a proof tree leading to that configuration:

〈true, σ〉 ⇓ true 〈skip, σ〉 ⇓ σ

Repeat of Proof Tree
〈while true do skip, σ〉 ⇓ σ′

〈while true do skip, σ〉 ⇓ σ′

The proof tree contains a copy of itself. This is not possible, because the proof tree is necessarily finite.
Because any depth-first walk of this proof tree will never terminate, an interpreter using this proof will never
terminate. Therefore, � ∃ σ′ s.t. 〈while true do skip, σ〉 ⇓ σ′.

2.5 Errors

Lets try to add the ÷ operator to IMP with the following rule:
〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 ÷ a1, σ〉 ⇓ n where n = �n0/n1�.

Applying this rule to the case when a1 evaluates to 0, (e.g. 〈2 ÷ 0, σ〉 ⇓ n), the interpreter will try to
find n s.t. �n0/0� = n. The interpreter will never find an evaluation of an expression containing division by
zero, because there is no proof tree of the form:

...
〈a0, σ〉 ⇓ n0

...
〈a1, σ〉 ⇓ 0

〈a0 ÷ a1, σ〉 ⇓ n

3

By looking solely at the set of legal evaluations, we cannot distinguish this behavior from the infinite
loop in section 2.4.
We could introduce an extra “state” to store and propagate errors: 〈a, σ〉 ⇓ (σ, error) but this would

complicate our operational semantics. Although we will not add division to IMP now, we will discuss
small-step semantics which deals with error conditions.

3 Using Induction to Prove Characteristics of IMP

An examination of the semantics of IMP tell us that the language is deterministic.
Formally, ∀c, σ, σ′′ : 〈c, σ〉 ⇓ σ′ ∧ 〈c, σ〉 ⇓ σ′′ ⇔ σ′ = σ′′

We could prove this by using induction on the size of a proof tree. This will be discussed further later in the
course.

4 Non-determinism and Parallelism

4.1 Dijkstra’s Non-deterministic Choice Operator

Let c0 c1 denote an application of Dijkstra’s non-deterministic choice operator to the two operands c0

and c1. If both commands will terminate, then the operator can choose either. If only one command will
terminate, then the operator chooses that one.

Rules for such a command would be:

〈c0, σ〉 ⇓ σ′

〈c0 c1, σ〉 ⇓ σ′ and
〈c1, σ〉 ⇓ σ′

〈c0 c1, σ〉 ⇓ σ′

An interpreter with this behavior must always make the right choice between executing c0 or c1. In
practice, this requires both commands to be executed. The choice operator illustrates the fact that it is easy
to write large-step semantics which correspond to a language that is difficult to implement.

4.2 Parallelism and the cobegin Command

Let the configuration 〈cobegin c0c1, σ〉 ⇓ σ′ denote running two commands c0, c1 in parallel, keeping the
side effects of each. If we try to write rules to specify this behavior, for example,

〈c0, σ〉 ⇓ σ′′ · · ·
〈cobegin c0c1, σ〉 ⇓ σ′

we realize that we cannot describe the possible interleaving of the execution of c0 that of c1. Large-step
semantics are not well-suited to describing parallel executions. Small-step semantics, however, will allow us
to discuss individual steps of computation performed during command execution.

5 Small Step Semantics

The examples in section 4 highlight the limits of the large step semantics that we have been using to
describe the behavior of our IMP programs. Large step semantics (also called natural semantics) are limited
to showing the result of executing a certain command — they cannot show the steps taken during that
execution. For that, we introduce a new system called small step semantics which will be discussed in
the next lecture.

4

Briefly, small step semantics describe what happens during each step of the execution. For example,
〈c, σ〉 → 〈c′, σ′〉, shows us that after the first step of executing c in σ we arrive at a new configuration, one
where we are about to execute c′ in state σ′.

5

