
CS611 Lecture 19 The side effects of introducing state 10/6/00
Scribe: André Allavena, Vadim Grinshpun Lecturer: Andrew Myers

1 Extending uF to uF!

Let’s define the language uF! to be a superset of uF that also deals with state (the bang (“!”) is used in uF!
for dereferencing, hence the name). The grammar is extended as follows:

e ::= {everything from uF} | ref e | !e | e1 := e2 | l

The l is a location that can be assigned a value. In the assignment e1 := e2, e1 must evaluate to a location
and e2 to a value. A program cannot contain any location expressions, although they may be generated
during execution of the operational semantics.

We also need to define the following domains to deal with the introduction of state:

Storable = Values+Error
Store = Location −→ Storable

Above, Location is a c.p.o. and Error represents an unmapped location.

2 A lazy evaluation scheme

let lazyval = 〈ref (#f), ref (fn u e)〉 in
let getval = fn lv (if (!(first lv)) (!(rest lv)) .

(let v1 = (!(rest lv))#u in
let u1 = ((first lv)) := #t) in

let u2 = ((rest lv)) := v1)
in v2

in
. . .

getval(lazyval)

The expression e is only evaluated once, no matter how many times getval(longval) is evaluated.

3 Small Step Operational Semantics of uF!

Most expressions in uF! are not aware of state, and therefore are no different from their uF counterparts.
Thus, for these expressions we can borrow the semantics from uF, taking care to include the state σ in the
configuration, and make sure it is preserved. Therefore, a rule of the form e −→ e′ becomes (e, σ) −→ (e′, σ).
For example,

(if #t e1 e2) −→ e1

changes to
(if #t e1 e2, σ) −→ (e1, σ)

We now extend the evaluation context as follows:

C ::= . . . | ref C | !C | C := e | v ::= C

v ::= . . . | l

The general rule is
(e, σ) −→ (e′, σ′)

(C[e], σ) −→ (C[e′], σ′)

1

Here are the rest of the rules:
(ref v, σ) −→ (l, σ[l �→ v]) where σl = error.

(!l, σ) −→ (σ(l), σ)
(l := v, σ) −→ (#u, σ[l �→ v])

We do not want to allocate the same location twice. Nothing prevents a location from being stored in
a location. To model a language like C where we can explicitly deallocate locations, we can also define an
expression free e that works as follows:

σl 	= error

〈free l, σ〉 → 〈#u, σ〉
We have chosen to represent stores as fuctions; another way to represents the stores would be to have

Storable be a list of pairs expression value :

Storable = 〈〈e1, v1〉, 〈e2, v2〉, . . .〉

4 CBV Denotational Semantics of uF!

Suppose we are given the functions ρ (the environment) and σ (the store). We can then define the formal
denotational semantics of uF!:

C[[e]] ∈ Env → Store → Result
σ ∈ Store = (Location → Value + Error)
ρ ∈ Env = (Var → Value + Error)
f ∈ Function = (Value → Store → Result)
Result = ((Value + Error)× Store)⊥
Value = U + Z + T +Pair+ Function+ Location

We should change our “scase” expression to reflect the fact that our generic error is no longer represented
by error but by the pair 〈error, σ〉. Assuming we have done so, we can define the meaning C[[e]]ρσ of an
expression e inductively as follows:

C[[n]]ρσ = 〈n, σ〉
C[[e1 ⊕ e2]]ρσ = scase C[[e1]]ρσ of 〈Value(v1), σ′〉 . scase C[[e2]]ρσ′ of 〈Value(v2), σ′′〉.

〈v1 ⊕E v2, σ
′′〉

C[[if e0 e1 e2]]ρσ = scase C[[e0]]ρσ of 〈Value(T(l)), σ′〉 .
if t then C[[e1]]ρσ′ else C[[e2]]ρσ′

C[[fn x e]]ρσlex = λvσdyn . C[[e0]]ρ[x �→ v]σdyn

C[[e1 e2]]ρσ = scase C[[e1]]ρσ of 〈Value(Function(f)), σ′〉 . scase C[[e2]]ρσ′ of
〈Value(v), σ′′〉 . fvσ′′

C[[rec y (fn x e)]]ρσ = fix λf ∈ Function.λvσ′ C[[e]]ρ[x �→ v, y �→ f]σ′

C[[ref e]] = scase C[[e]]ρσ of 〈Value(v), σ′〉 . let l = malloc(σ′) in 〈l, σ′[l �→ v]〉
C[[!e]] = scase C[[e]]ρσ of 〈Value(Location(l)), σ′〉 . 〈σ′(l), σ′〉

C[[e1 := e2]] = scase C[[e1]]ρσ of 〈Value(Location(l)), σ′〉 . scase C[[e2]]ρσ′ of 〈Value(v), σ′′〉 .
〈u, σ′′[l �→ v]〉

We assume we have a deterministic malloc function which, given a state σ, creates a new location in it and
maps it to the value Error in σ. We don’t care which such function it is.

malloc : Store → Location
s.t. σ(malloc(σ)) = error

2

5 Assignments in IMP

The language IMP allows assignments to variables, not to locations. We can translate an imperative language
with mutable variables by a translation like the following.

x :: e
D[[x]] = !x

D[[x := e]] = x := D[[e]]
D[[let x = e1in e2]] = let x = ref D[[e1]]in D[[e2]]

3

