1 Extending uF to uF!

Let's define the language uF! to be a superset of uF that also deals with state (the bang ("!") is used in uF! for dereferencing, hence the name). The grammar is extended as follows:

$$
e::=\{\text { everything from uF }\} \quad \mid \text { ref } e|!e| e_{1}:=e_{2} \mid l
$$

The l is a location that can be assigned a value. In the assignment $e_{1}:=e_{2}, e_{1}$ must evaluate to a location and e_{2} to a value. A program cannot contain any location expressions, although they may be generated during execution of the operational semantics.

We also need to define the following domains to deal with the introduction of state:

$$
\begin{gathered}
\text { Storable }=\text { Values }+ \text { Error } \\
\text { Store }=\text { Location } \longrightarrow \text { Storable }
\end{gathered}
$$

Above, Location is a c.p.o. and Error represents an unmapped location.

2 A lazy evaluation scheme

```
let lazyval = <ref (#f), ref (fn ue)\rangle in
    let getval = fn lv ( if (!(first lv)) (!(rest lv)).
            (let }\mp@subsup{v}{1}{}=(!(\mathrm{ rest lv))#u in
            let }\mp@subsup{u}{1}{}=((\mathrm{ first lv)):=#t) in
                let }\mp@subsup{u}{2}{}=((\mathrm{ rest lv)):= v
                        in }\mp@subsup{v}{2}{
            in
            ..
                        getval(lazyval)
```

The expression e is only evaluated once, no matter how many times getval(longval) is evaluated.

3 Small Step Operational Semantics of uF!

Most expressions in uF! are not aware of state, and therefore are no different from their uF counterparts. Thus, for these expressions we can borrow the semantics from uF , taking care to include the state σ in the configuration, and make sure it is preserved. Therefore, a rule of the form $e \longrightarrow e^{\prime}$ becomes $(e, \sigma) \longrightarrow\left(e^{\prime}, \sigma\right)$. For example,

$$
\left(\text { if } \# t e_{1} e_{2}\right) \longrightarrow e_{1}
$$

changes to

$$
\text { (if } \left.\# t e_{1} e_{2}, \sigma\right) \longrightarrow\left(e_{1}, \sigma\right)
$$

We now extend the evaluation context as follows:

$$
\begin{gathered}
C::=\ldots \mid \text { ref } C \quad|\quad!C \quad| \quad C:=e \quad \mid \quad v::=C \\
v::=\ldots \mid \quad l
\end{gathered}
$$

The general rule is

$$
\frac{(e, \sigma) \longrightarrow\left(e^{\prime}, \sigma^{\prime}\right)}{(C[e], \sigma) \longrightarrow\left(C\left[e^{\prime}\right], \sigma^{\prime}\right)}
$$

Here are the rest of the rules:

$$
\begin{gathered}
(\operatorname{ref} v, \sigma) \longrightarrow(l, \sigma[l \mapsto v]) \quad \text { where } \sigma l=\text { error. } \\
(!l, \sigma) \longrightarrow(\sigma(l), \sigma) \\
(l:=v, \sigma) \longrightarrow(\# u, \sigma[l \mapsto v])
\end{gathered}
$$

We do not want to allocate the same location twice. Nothing prevents a location from being stored in a location. To model a language like C where we can explicitly deallocate locations, we can also define an expression free e that works as follows:

$$
\frac{\sigma l \neq \text { error }}{\langle\text { free } l, \sigma\rangle \rightarrow\langle \# u, \sigma\rangle}
$$

We have chosen to represent stores as fuctions; another way to represents the stores would be to have Storable be a list of pairs expression value :

$$
\text { Storable }=\left\langle\left\langle e_{1}, v_{1}\right\rangle,\left\langle e_{2}, v_{2}\right\rangle, \ldots\right\rangle
$$

4 CBV Denotational Semantics of uF!

Suppose we are given the functions ρ (the environment) and σ (the store). We can then define the formal denotational semantics of uF!:

```
\(\mathcal{C} \llbracket e \rrbracket \in\) Env \(\rightarrow\) Store \(\rightarrow\) Result
\(\sigma \in\) Store \(=(\) Location \(\rightarrow\) Value + Error \()\)
\(\rho \in \mathbf{E n v}=(\) Var \(\rightarrow\) Value + Error \()\)
\(f \in\) Function \(=(\) Value \(\rightarrow\) Store \(\rightarrow\) Result \()\)
Result \(=((\text { Value }+ \text { Error }) \times \text { Store })_{\perp}\)
Value \(=\mathbb{U}+\mathbb{Z}+\mathbb{T}+\) Pair + Function + Location
```

We should change our "scase" expression to reflect the fact that our generic error is no longer represented by error but by the pair \langle error,$\sigma\rangle$. Assuming we have done so, we can define the meaning $\mathcal{C} \llbracket e \rrbracket \rho \sigma$ of an expression e inductively as follows:

$$
\begin{aligned}
& \mathcal{C} \llbracket n \rrbracket \rho \sigma=\langle n, \sigma\rangle \\
& \mathcal{C} \llbracket e_{1} \oplus e_{2} \rrbracket \rho \sigma=\text { scase } \mathcal{C} \llbracket e_{1} \rrbracket \rho \sigma \text { of }\left\langle\operatorname{Value}\left(v_{1}\right), \sigma^{\prime}\right\rangle \text {. scase } \mathcal{C} \llbracket e_{2} \rrbracket \rho \sigma^{\prime} \text { of }\left\langle\operatorname{Value}\left(v_{2}\right), \sigma^{\prime \prime}\right\rangle . \\
& \left\langle v_{1} \oplus_{E} v_{2}, \sigma^{\prime \prime}\right\rangle \\
& \mathcal{C} \llbracket \text { if } e_{0} e_{1} e_{2} \rrbracket \rho \sigma=\text { scase } \mathcal{C} \llbracket e_{0} \rrbracket \rho \sigma \text { of }\left\langle\text { Value }(\mathbb{T}(l)), \sigma^{\prime}\right\rangle . \\
& \text { if } t \text { then } \mathcal{C} \llbracket e_{1} \rrbracket \rho \sigma^{\prime} \text { else } \mathcal{C} \llbracket e_{2} \rrbracket \rho \sigma^{\prime} \\
& \mathcal{C} \llbracket \mathrm{fn} \quad x e \rrbracket \rho \sigma_{l e x}=\lambda v \sigma_{d y n} \cdot \mathcal{C} \llbracket e_{0} \rrbracket \rho[x \mapsto v] \sigma_{d y n} \\
& \mathcal{C} \llbracket e_{1} e_{2} \rrbracket \rho \sigma=\text { scase } \mathcal{C} \llbracket e_{1} \rrbracket \rho \sigma \text { of }\left\langle\text { Value }(\text { Function }(f)), \sigma^{\prime}\right\rangle \text {. scase } \mathcal{C} \llbracket e_{2} \rrbracket \rho \sigma^{\prime} \text { of } \\
& \left\langle\operatorname{Value}(v), \sigma^{\prime \prime}\right\rangle . f v \sigma^{\prime \prime} \\
& \mathcal{C} \llbracket \text { rec } y(\operatorname{fn} x e) \rrbracket \rho \sigma=\text { fix } \lambda f \in \text { Function. } \lambda v \sigma^{\prime} \mathcal{C} \llbracket e \rrbracket \rho[x \mapsto v, y \mapsto f] \sigma^{\prime} \\
& \mathcal{C} \llbracket r e f e \rrbracket=\text { scase } \mathcal{C} \llbracket e \rrbracket \rho \sigma \text { of }\left\langle\operatorname{Value}(v), \sigma^{\prime}\right\rangle \text {. let } l=\operatorname{malloc}\left(\sigma^{\prime}\right) \text { in }\left\langle l, \sigma^{\prime}[l \mapsto v]\right\rangle \\
& \mathcal{C} \llbracket!e \rrbracket=\text { scase } \mathcal{C} \llbracket e \rrbracket \rho \sigma \text { of }\left\langle\text { Value }(\text { Location }(l)), \sigma^{\prime}\right\rangle .\left\langle\sigma^{\prime}(l), \sigma^{\prime}\right\rangle \\
& \mathcal{C} \llbracket e_{1}:=e_{2} \rrbracket=\quad \text { scase } \mathcal{C} \llbracket e_{1} \rrbracket \rho \sigma \text { of }\left\langle\operatorname{Value}(\text { Location }(l)), \sigma^{\prime}\right\rangle . \operatorname{scase} \mathcal{C} \llbracket e_{2} \rrbracket \rho \sigma^{\prime} \text { of }\left\langle\operatorname{Value}(v), \sigma^{\prime \prime}\right\rangle . \\
& \left\langle u, \sigma^{\prime \prime}[l \mapsto v]\right\rangle
\end{aligned}
$$

We assume we have a deterministic malloc function which, given a state σ, creates a new location in it and maps it to the value Error in σ. We don't care which such function it is.

$$
\begin{aligned}
\text { malloc }: & \text { Store } \rightarrow \text { Location } \\
\text { s.t. } & \sigma(\operatorname{malloc}(\sigma))=\text { error }
\end{aligned}
$$

5 Assignments in IMP

The language IMP allows assignments to variables, not to locations. We can translate an imperative language with mutable variables by a translation like the following.

$$
\begin{aligned}
x & :: \\
\mathcal{D} \llbracket x \rrbracket & =\text { ! } \\
\mathcal{D} \llbracket x:=e \rrbracket & =x:=\mathcal{D} \llbracket e \rrbracket \\
\mathcal{D} \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket & =\text { let } x=\text { ref } \mathcal{D} \llbracket e_{1} \rrbracket \text { in } \mathcal{D} \llbracket e_{2} \rrbracket
\end{aligned}
$$

