
CS611 Lecture 18 Call-by-name uF 10/04/00
Scribe: Jian Qiu and Yong Yao Lecturer: Andrew Myers

1 Non-hierarchical Scope: Modules

The binding constructs we have seen so far are all hierarchical in nature. Each construct establishes a parent-
child relationship between an outer context in which the declaration is not visible and an inner (body) context
in which the declaration is visible. In static scoping, the hierarchy is determined by the abstract syntax tree,
while in dynamic scoping, the hierarchy is determined by the tree of procedure calls generated at run-time.
In both these scoping mechanisms, there is no natural way to communicate a declaration laterally across the
tree-structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large program is broken into independent
pieces, or modules, the constraint of hierarchy can be a problem. Modules connect and communicate with
each other via collections of bindings; a module provides services by exporting a set of bindings, and makes
use of other modules’ services by importing bindings from those other modules. In a hierarchical language,
the scope of a binding is a single region of program, so all the clients of a module must reside in the region
where the module’s bindings are in scope.

The traditional solution to the problem of communicating modules is to use a global namespace. All
exported bindings from all modules are defined in a single environment, so all exported bindings are available
to all modules. This approach is used in languages like C or FORTRAN. A C program is a bunch of top-
level functions and in this way it is possible to call any function anywhere. A global namespace has some
major drawbacks: In order to avoid accidental name collisions, every module must be aware of all definitions
made by all other modules, even those definitions that are completely irrelevant; the dependencies between
modules are poorly documented, making intermodule dependencies difficult to track, and leading to fragile
code over time.

A way for languages to overcome the hierarchical scoping of binding constructs is to provide a value
with named subparts. For this purpose, we will introduce a new module value that bundles up a set of
bindings at one point in a program and can communicate them to a point that is related neither lexically
nor dynamically to the declarations of those bindings, Typically, a module defines a set of named values,
especially procedures, that provide a particular function. Some examples of these are: modules in ML, and
classes in C++ and Java.

To introduce a simple module mechanism into uF, we have to add new expression forms to uF. Expressions
are then defined by the following grammar:

e ::= ... | module (x1 = e1, ..., xn = en) | em.x | with em e

We need to extend the domain equations to allow new kinds of values – module values.

Value = ... + Module

Module = Env

Env = Var → Value + Error

The denotational semantics of modular uF now needs to include the semantics for the module constructs:

C[[module (x1 = e1, ..., xn = en)]] = λρ . let v1 = C[[e1]]ρ ...

let vn = C[[en]]ρ .

ρE [x1 �→ v1, ... , xn �→ vn]

1

(ρE = λx . error)
C[[em.x]]ρ = let m = C[[em]]ρ . m(x)

C[[with em e]]ρ = let m = C[[em]]ρ . C[[e]](λx ∈ Var .

case m(x) of Value(v) . v

| Error(e) . ρ(x))

2 Converting uF to a lazy language

So far, we have been talking about languages like Scheme and ML with strict evaluation. Now we want to
define a lazy uF language like Haskell and Miranda. We are going to keep the syntax of uF exactly the same
as before, and reinterprete the expressions so that they become lazy. We do not evaluate anything unless we
absolutely have to. First, we need to write down the domain equations to represent values in the language.

Value = Z + T + U + Pair+ Function

Result = (Value + Error)⊥
Pair = Result × Result

Binding = Result

Function = Binding → Result

Env = Variable → Result

Just as in strict uF, the semantic function C takes an expression and maps it to a function that produces a
result given an environment in which to interprete the free viariables of the expression:

C[[e]] ∈ Env → Result

Since the language is lazy, we can say something like:

let loop = (fn x (x x)) (fn x (x x))
in let p = 〈 loop , loop 〉

in 0

This expression will evaluate to zero because the language is lazy and will not evaluate the loop or the
elements of the pair p. In the original strict uF, the program will fail to terminate while evaluating loop.

The denotational semantics of the lazy uF language is:

C[[x]]ρ = ρ (x)
C[[〈 e1 , e2 〉]]ρ = 〈 C[[e1]]ρ , C[[e2]]ρ 〉

C[[fn x e]]ρ = λr ∈ Result . C[[e]]ρ[x �→ r]
C[[e1 e2]]ρ = scase C[[e1]]ρ of

Function(f) . f (C[[e2]]ρ)
C[[rec x er]]ρ = fix λr ∈ Result . C[[er]]ρ [x �→ r]

2

The rules for first, rest and arithmetic operations will not change and are still strict evaluations. In this
language, we can have er = e. The fix operator can be applied to not just functions, but also other things
like tuples. We can say something like ones:

ones ≡ rec x 〈 1 , x 〉

The value ones represents an infinite sequence of ones:

〈 1 , 〈 1 , 〈 1 , ... 〉 〉 〉

The denotational semantics of ones is obtained by applying the fix operator to function F:

F = λr ∈ Result . 〈 1 , r 〉

C[[rec x 〈 1 , x 〉]]ρ = fix λr ∈ Result . 〈 1 , r 〉

F0 (⊥) = ⊥
F1 (⊥) = 〈 1 , ⊥ 〉
F2 (⊥) = 〈 1 , 〈 1 , ⊥ 〉 〉

.

.

.

The use of fix requires that r ∈ Result is a pointed CPO, and we require that the function C[[er]]ρ[x �→ r] to
be continuous. In order to make fixed-point in ones construction, Result must be a CPO. This requires that
Pair is also a CPO. Therefore, Pair must allow infinite sequence construction, unlike the least fixed-point
solutions we saw how to derive earlier for inductive definitions.

3 lazy uF to strict uF definitional Semantics

Our call-by-name lazy semantics are easier to write down than the strict semantics. This seems to tell us
that a lazy language is easier to compile than a strict language, which is not the case. How do we find
out what is involved in compiling a lazy language? We can write a definitional semantics for our lazy uF
language in terms of the strict language.

D[[e]] = e′

where e is written in lazy uF, and e′ is written in strict uF.In 1961, it was figured out for the language Algol
60 that we can implement laziness using thunks. In order to write a value, we turn it into a function, which
if we call it, will give us the value that you want. If we want to evaluate a value e, we apply a dummy
argument to the function:

D[[e]] #u

This is the “strict e”. The “lazy e” will be a thunk:

D[[e]]

Now we can write down the definitional semantics:

D[[n]] = (fn u n)
D[[x]] = x

D[[〈 e1 , e2 〉]] = (fn u 〈 D[[e1]] , D[[e2]] 〉)

3

D[[first e]] = first (D[[e]] #u)
D[[fn x e]] = (fn u (fn x D[[e]]))
D[[e1 e2]] = (D[[e1]] #u) D[[e2]]

D[[rec x e]] = rec x D[[e]]

To see what’s going on here, we can apply this translation to rec x 〈1,x〉:

D[[rec x 〈 1 , x 〉]] = rec x (D[[〈 1 , x 〉]])
rec x (fn u 〈 D[[1]] , D[[x]] 〉)
rec x (fn u 〈 (fn u 1) , x 〉)

D[[first (rec x 〈 1 , x 〉)]] = first (rec x (fn u 〈 (fn u 1) , x 〉) #u)
→ first ((fn u 〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉) #u)
→ first (〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉)
→ first (〈 fn u 1 , fn u 〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉〉)
→ fn u 1
= D[[1]]

D[[rest (rec x 〈 1 , x 〉)]] = rest (rec x (fn u 〈 (fn u 1) , x 〉) #u)
→ rest ((fn u 〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉) #u)
→ rest (〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉)
→ rest (〈 fn u 1 , fn u 〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉〉)
→ fn u 〈 fn u 1 , rec x (fn u 〈 fn u 1 , x 〉)〉
= D[[rec x 〈 1 , x 〉]]

4

