In this lecture we shall show the equivalence of operational and denotational semantics for REC+ (i.e. REC plus let). Namely, we will use strict evaluation and full function scope (A3 from prev. lecture). Winskel proves the equivalence of large step operational and denotational semantics, we shall prove the equivalence of small step and denotational semantics. The proof techniques are similar.

We want to prove

$$
\mathcal{C} \llbracket e \rrbracket \mathcal{D} \llbracket d \rrbracket \emptyset=\lfloor n\rfloor \quad \Leftrightarrow \quad(d, e) \rightarrow^{*}(d, n)
$$

We will use $\delta=\mathcal{D} \llbracket d \rrbracket$ as a shorthand. Recall that $\mathcal{D} \llbracket d \rrbracket=$ fix $\lambda \phi .\left\langle\mathcal{F}_{1}(\phi), \ldots, \mathcal{F}_{n}(\phi)\right\rangle$, where $\mathcal{F}_{n}(\phi)\left(n_{1}, \ldots, n_{a_{i}}\right)=\mathcal{C} \llbracket e_{i} \rrbracket \phi \emptyset\left[x_{1} \mapsto n_{1}, \ldots, x_{1} \mapsto n_{a_{i}}\right]$ and $d=\left(e_{1}, \ldots e_{n}\right)$. The \rightarrow implication is usually called adequacy, the \leftarrow implication is soundness of the operational semantics. We will show adequacy by induction on the structure of the expression, then we will show soundness in two steps. In the first step we show that if $(d, e) \rightarrow\left(d, e^{\prime}\right)$, then e and e^{\prime} have the same meaning, i.e. $\mathcal{C} \llbracket e \rrbracket \delta \emptyset=\mathcal{C} \llbracket e^{\prime} \rrbracket \delta \emptyset$. The second step is a straightforward induction to show that if $(d, e) \rightarrow^{*}(d, n)$, then $\mathcal{C} \llbracket e \rrbracket \delta \emptyset=\lfloor n\rfloor$.

Adequacy

We need to prove a slightly stronger statement. Namely,

$$
\mathcal{C} \llbracket e \rrbracket \delta\left\{x_{1} \mapsto n_{1}, \ldots, x_{1} \mapsto n_{K}\right\}=\lfloor n\rfloor \quad \Rightarrow \quad\left(d, e\left\{n_{1} / x_{1}, \ldots, n_{K} / x_{K}\right\}\right) \rightarrow^{*}(d, n)
$$

We shall use $\left\{x_{k} \mapsto n_{k}\right\}$ as a shorthand for $\emptyset\left[x_{1} \mapsto n_{1}, \ldots, x_{1} \mapsto n_{K}\right]$ and $e\left\{n_{k} / x_{k}\right\}$ for $e\left\{n_{1} / x_{1}, \ldots, n_{K} / x_{K}\right\}$.
To be precise, we prove this not for δ, but for a different function environment ϕ defined as

$$
\begin{aligned}
\pi_{i} \phi\left(n_{1}, \ldots, n_{a_{i}}\right)= & \underset{\perp}{\lfloor n\rfloor} \quad \begin{array}{l}
\text { if }\left(d, e_{i}\left\{n_{k} / x_{k}\right\}\right) \rightarrow^{*}(d, n) \text { for some } n \\
\\
\text { otherwise }
\end{array}
\end{aligned}
$$

and then we prove that $\delta \sqsubseteq \phi$, which gives us that $\mathcal{C} \llbracket e \rrbracket \phi \rho=\lfloor n\rfloor$ whenever $\mathcal{C} \llbracket e \rrbracket \delta \rho=\lfloor n\rfloor$.

- $\mathcal{C} \llbracket n^{\prime} \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\lfloor n\rfloor$. The only possibility is $n=n^{\prime}$ and $\left(d, n^{\prime}\left\{n_{k} / x_{k}\right\}\right) \rightarrow^{*}\left(d, n\left\{n_{k} / x_{k}\right\}\right)$ in zero steps.
- $\mathcal{C} \llbracket x \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\lfloor n\rfloor$. It must be the case that $x=x_{k}$ for some k. Thus, $n=n_{k}, x\left\{n_{k} / x_{k}\right\}=n_{k}$ and $\left(d, n_{k}\right) \rightarrow^{*}\left(d, n_{k}\right)$ in zero steps.
- $\mathcal{C} \llbracket e_{1} \oplus e_{2} \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\lfloor n\rfloor$. Thus, it must be the case that

$$
\begin{aligned}
\mathcal{C} \llbracket e_{1} \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\} & =\left\lfloor n_{1}\right\rfloor \quad \text { and } \\
\mathcal{C} \llbracket e_{2} \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\} & =\left\lfloor n_{2}\right\rfloor
\end{aligned}
$$

for some n_{1}, n_{2}, such that $n_{1} \oplus n_{2}=n$ (the only case when \oplus_{\perp} does not return \perp is when none of its arguments is \perp). From the induction hypothesis we know that

$$
\begin{aligned}
& \left(d, e_{1}\left\{n_{k} / x_{k}\right\}\right) \rightarrow^{*}\left(d, n_{1}\right) \quad \text { and } \\
& \left(d, e_{2}\left\{n_{k} / x_{k}\right\}\right) \rightarrow^{*}\left(d, n_{2}\right)
\end{aligned}
$$

Thus there are sequences $e_{1}^{1}, \ldots, e_{1}^{s}$ and $e_{2}^{1}, \ldots, e_{2}^{t}$ such that

$$
\begin{aligned}
& \left(d, e_{1}\left\{n_{k} / x_{k}\right\}\right)=\left(d, e_{1}^{1}\right) \rightarrow\left(d, e_{1}^{2}\right) \rightarrow \ldots \rightarrow\left(d, n_{1}\right) \quad \text { and } \\
& \left(d, e_{2}\left\{n_{k} / x_{k}\right\}\right)=\left(d, e_{2}^{1}\right) \rightarrow\left(d, e_{2}^{2}\right) \rightarrow \ldots \rightarrow\left(d, n_{2}\right)
\end{aligned}
$$

It is not hard to see that

$$
\left(d,\left(e_{1} \oplus e_{2}\right)\left\{n_{k} / x_{k}\right\}\right)=\left(d, e_{1}^{1} \oplus e_{2}^{1}\right) \rightarrow\left(d, e_{1}^{2} \oplus e_{2}^{1}\right) \rightarrow \ldots \rightarrow\left(d, n_{1} \oplus e_{2}^{1}\right) \rightarrow \ldots \rightarrow\left(d, n_{1} \oplus n_{2}\right) \rightarrow(d, n)
$$

- $\mathcal{C} \llbracket f_{i}\left(e_{1}, \ldots e_{a_{i}}\right) \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\lfloor n\rfloor$. The most difficult case. Since we have strict evaluation, it must be the case that

$$
\mathcal{C} \llbracket e_{j} \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\left\lfloor n_{j}\right\rfloor
$$

for each $j=1, \ldots, a_{i}$ and some $n_{1}, \ldots, n_{a_{i}}$ and

$$
\left(\pi_{i} \phi\right)\left\langle\left\lfloor n_{1}\right\rfloor, \ldots,\left\lfloor n_{a_{i}}\right\rfloor\right\rangle=\lfloor n\rfloor
$$

\rangle From definition of ϕ, this implies $\left(d, e_{i}\left\{n_{1} / x_{1}, \ldots, n_{a_{i}} / x_{a_{i}}\right\}\right) \rightarrow^{*}(d, n)$. From the induction hypothesis we know that $\left(d, e_{j}\right) \rightarrow^{*}\left(d, n_{j}\right)$ for $j=1, \ldots, a_{i}$. \rangle From these $\left(a_{i}+1\right)$ derivations we easily construct a derivation for $\left(d, f_{i}\left(e_{1}, \ldots, e_{a_{i}}\right)\right) \rightarrow^{*}(d, n)$.

We omitted some cases (like ifz then else) in our proof but their proof would follow one of the above patterns.

We have shown $\mathcal{C} \llbracket e \rrbracket \phi\left\{x_{k} \mapsto n_{k}\right\}=\lfloor n\rfloor \Rightarrow\left(d, e\left\{n_{k} / x_{k}\right\}\right) \rightarrow^{*}(d, n)$. Now we need to show $\delta \sqsubseteq \phi$ to complete the proof.

We know that δ is the least fixed point of the function $\lambda \phi .\left\langle\mathcal{F}_{1}(\phi), \ldots, \mathcal{F}_{n}(\phi)\right\rangle$, and thus also the least prefixed point of this function. We show that ϕ is a prefixed point of $\lambda \phi .\left\langle\mathcal{F}_{1}(\phi), \ldots, \mathcal{F}_{n}(\phi)\right\rangle$ (which implies $\delta \sqsubseteq \phi)$. We need to show that $\mathcal{F}_{i}(\phi) \sqsubseteq \pi_{i} \phi$ for any i. To prove this we will use the following lemma:

Substitution Lemma

$$
\mathcal{C} \llbracket e_{i} \rrbracket \phi \rho\left[x_{1} \mapsto n_{1}, \ldots, x_{a_{i}} \mapsto n_{a_{i}}\right]=\mathcal{C} \llbracket e_{i}\left\{n_{1} / x_{1}, \ldots n_{a_{i}} / x_{a_{i}}\right\} \rrbracket \phi \rho
$$

The proof of this lemma is an easy induction on the structure of the formula e.
Now, by definition of \mathcal{F}_{i} we have $\mathcal{F}_{i}(\phi)\left(n_{1}, \ldots n_{a_{i}}\right)=\mathcal{C} \llbracket e_{i} \rrbracket \emptyset \emptyset\left\{x_{k} \mapsto n_{k}\right\}$, by applying the substitution lemma we get $\mathcal{F}_{i}(\phi)\left(n_{1}, \ldots n_{a_{i}}\right)=\mathcal{C} \llbracket e_{i}\left\{n_{1} / x_{1}, \ldots n_{a_{i}} / x_{a_{i}}\right\} \rrbracket \phi$. We have already proven that if $\mathcal{C} \llbracket e_{i}\left\{n_{1} / x_{1} \ldots n_{a_{i}} / x_{a_{i}} \rrbracket \phi \emptyset=\lfloor n\rfloor\right.$ for some n, then $\left(d, e_{i}\left\{n_{1} / x_{1} \ldots n_{a_{i}} / x_{a_{i}}\right) \rightarrow^{*}(d, n)\right.$ and therefore (by definition of ϕ) we also have $\pi_{i} \phi=\lfloor n\rfloor$. Thus $\mathcal{F}_{i}(\phi)\left(n_{1}, \ldots n_{a_{i}}\right) \sqsubseteq \phi\left(n_{1}, \ldots n_{a_{i}}\right)$ for all $n_{1}, \ldots n_{a_{i}}$, thus $\mathcal{F}_{i}(\phi) \sqsubseteq \pi_{i} \phi$ and hence ϕ is a prefixed point.

Soundness

We need to show that if $(d, e) \rightarrow^{*}(d, n)$ then $\mathcal{C} \llbracket e \rrbracket \delta \emptyset=\lfloor n\rfloor$. Definitely it is enough to show that if $(d, e) \rightarrow$ $\left(d, e^{\prime}\right)$, then $\mathcal{C} \llbracket \llbracket \rrbracket \delta \emptyset=\mathcal{C} \llbracket e^{\prime} \rrbracket \delta \emptyset$. The proof of this goes by induction on the height of the derivation of $(d, e) \rightarrow\left(d, e^{\prime}\right)$.
Base of induction. We show only two cases:

- $\left(d, n_{1} \oplus n_{2}\right) \rightarrow(d, n) . \mathcal{C} \llbracket n_{1} \oplus n_{2} \rrbracket \delta \emptyset=\left\lfloor n_{1}\right\rfloor \oplus_{\perp}\left\lfloor n_{2}\right\rfloor=\lfloor n\rfloor$.
- $\left(d, f_{i}\left(n_{1}, \ldots, n_{a_{i}}\right)\right) \rightarrow\left(d, e_{i}\left\{n_{1} / x_{1}, \ldots, n_{a_{i}} / x_{a_{i}}\right\}\right)$. Then by definition of δ we have

$$
\mathcal{C} \llbracket f_{i}\left(n_{1}, \ldots, n_{a_{i}}\right) \rrbracket \delta \emptyset=\left(\pi_{i} \delta\right)\left(n_{1}, \ldots, n_{a_{i}}\right)=\mathcal{C} \llbracket e_{i} \rrbracket \delta \emptyset\left\{x_{1} \mapsto n_{1}, \ldots, x_{a_{i}} \mapsto n_{a_{i}}\right\}
$$

by applying the substitution lemma we have

$$
\mathcal{C} \llbracket e_{i} \rrbracket \delta \emptyset\left\{x_{1} \mapsto n_{1}, \ldots, x_{a_{i}} \mapsto n_{a_{i}}\right\}=\mathcal{C} \llbracket e_{i}\left\{n_{1} / x_{1}, \ldots n_{a_{i}} / x_{a_{i}}\right\} \rrbracket
$$

And finally we get $\mathcal{C} \llbracket f_{i}\left(n_{1}, \ldots, n_{a_{i}}\right) \rrbracket \delta \emptyset=\mathcal{C} \llbracket e_{i}\left\{n_{1} / x_{1}, \ldots n_{a_{i}} / x_{a_{i}}\right\} \rrbracket$.
Now we need to prove the induction step. We consider only the case when the expression is of the form $e_{1} \oplus e_{2}$, other cases are similar. Let $\left(d, e_{1} \oplus e_{2}\right) \rightarrow\left(d, e_{1}^{\prime} \oplus e_{2}\right)$. Then we know that $\left(d, e_{1}\right) \rightarrow\left(d, e_{1}^{\prime}\right)$. Thus by the induction hypothesis $\mathcal{C} \llbracket e_{1}^{\prime} \rrbracket \delta \emptyset=\mathcal{C} \llbracket e_{1} \rrbracket \delta \emptyset$. And therefore $\mathcal{C} \llbracket e_{1} \oplus e_{2} \rrbracket \delta \emptyset=\mathcal{C} \llbracket e_{1} \rrbracket \delta \emptyset \oplus \mathcal{C} \llbracket e_{2} \rrbracket \delta \emptyset=$ $\mathcal{C} \llbracket e_{1}^{\prime} \rrbracket \delta \emptyset \oplus \mathcal{C} \llbracket e_{2} \rrbracket \delta \emptyset=\mathcal{C} \llbracket e_{1}^{\prime} \oplus e_{2} \rrbracket \delta \emptyset$.

Comparison of Denotational and Operational Semantics

Operational	Denotational (fixed-pt)
allowed transition between syntactic forms	translates syntax into a model
results are just syntax: easy to define	results are domain elements: harder to define
easily express simple concurrency and non-determinism (sm-step)	non-determinism: powerdomains, concurrency: scheduling
termination behavior not obvious	termination behavior implicit in domain
does not explain compilation	gives insight: e.g. fixed points signal extra pass or back-patch

