CS611 Lecture 16 Equivalence of semantics for REC+ 09/29/00
Scribe: Mark Sandler and Martin Pal Lecturer: Andrew Myers

In this lecture we shall show the equivalence of operational and denotational semantics for REC+ (i.e.
REC plus let). Namely, we will use strict evaluation and full function scope (A3 from prev. lecture). Winskel
proves the equivalence of large step operational and denotational semantics, we shall prove the equivalence
of small step and denotational semantics. The proof techniques are similar.

We want to prove

Cle]D[d]d = |n] < (d,e) —* (d,n)

We will use 6 = D[d] as a shorthand. Recall that D[d] = fix A¢. (F1(), ..., Fn(@)), where
Fol@)(n1,...,nq,) = Cles]dd[z1 — n1,...,21 — ng,] and d = (e1,...e,). The — implication is usually
called adequacy, the « implication is soundness of the operational semantics. We will show adequacy by
induction on the structure of the expression, then we will show soundness in two steps. In the first step we
show that if (d,e) — (d,e’), then e and €’ have the same meaning, i.e. C[e]é0 = C[e']d0. The second step is
a straightforward induction to show that if (d,e) —* (d,n), then C[e]dd = |n].

Adequacy
We need to prove a slightly stronger statement. Namely,

Cle]é{zx1 — n1,..., 21— ng}=1|n] = (d,e{ni/z1,...,nx/zK}) =" (d,n)

We shall use {z}, — ny} as a shorthand for §[z1 — ny,..., 21 — ng| and e{ng/zx} for e{ni/x1,...,nx/xK }.
To be precise, we prove this not for §, but for a different function environment ¢ defined as

mip(ni,...,ne;) = |n] if (d,e;{ni/xr}) —* (d,n) for some n
1 otherwise

and then we prove that 6 C ¢, which gives us that C[e]¢p = |n| whenever Cle]dp = [n].

o C[n']¢{xr — ni} = [n]. The only possibility is n = n’ and (d,n'{ni/xr}) —* (d,n{ng/xx}) in zero
steps.

o Clz]¢{zr — ni} = [n]. It must be the case that x = xy, for some k. Thus, n = nk, z{ng/xr} = ni
and (d,ny) —* (d,ng) in zero steps.

o Cler @ ea]p{x — nr} = |n]. Thus, it must be the case that

Clei]p{zr — ni} = [n1] and
Cles]¢{zi — ni} = |n2]

for some nq, na, such that n; @ ne = n (the only case when @, does not return L is when none of its
arguments is). From the induction hypothesis we know that

(d,erx{ni/xr}) =" (d,n1) and
(d, ex{np/x1}) =" (d,n2)

Thus there are sequences e}, ...,ef and e, ..., e} such that
(d,ex{ni/ai}) = (d,e1) — (d,ef) — ... — (d,n1) and
(d, e2{ni/ar}) = (d, e3) — (d,€3) — ... — (d,n2)

It is not hard to see that

(da (61 D 62){nk/xk}) = (dve% D 6%) - (da e% D 6%) e 7 (dv ny @ e%) AR (dv ny @ n2) - (dv n)

o C[filex,...eq;)]¢{xr — nr} = |n]. The most difficult case. Since we have strict evaluation, it must
be the case that

Clej]o{zr — ni} = [ny]

for each j =1,...,a; and some ny,...,n,, and

i

(7Ti¢)<|_nlja) _naq‘,b - I_nJ

YFrom definition of ¢, this implies (d, e;{n1/x1,...,na,/Ta;}) —* (d,n). From the induction hypothesis
we know that (d,e;) —* (d,n;) for j =1,...,a,.)From these (a; + 1) derivations we easily construct
a derivation for (d, fi(e1,...,€q,)) =* (d,n).

We omitted some cases (like ifz then else) in our proof but their proof would follow one of the above
patterns.

We have shown Cle]¢{zr — ni} = |n] = (d,e{nr/xr}) —* (d,n). Now we need to show § C ¢ to
complete the proof.

We know that § is the least fixed point of the function A¢. (Fi(9),...,Fn(®)), and thus also the least
prefixed point of this function. We show that ¢ is a prefixed point of Agp. (F1(@), ..., Fn(¢)) (which implies
0 C ¢). We need to show that F;(¢) C m;¢ for any ¢. To prove this we will use the following lemma:

Substitution Lemma

C[[eiﬂ¢p[x1 =Ny, ..., Tq; — nai] = C[[ei{nl/xlv s nai/xai}]]¢p
The proof of this lemma is an easy induction on the structure of the formula e.

Now, by definition of F; we have F;(¢)(ni,...ns,) = Clei]¢d{zr — ni}, by applying the substi-
tution lemma we get Fi(4)(ni,...nq,) = Clei{ni/x1,...nq,/xq, }]¢h. We have already proven that if
Clei{ni/x1 ... nq; /xa,]¢0 = |n| for some n, then (d, e;{n1/z1...n4,/7q;) —* (d,n) and therefore (by defini-
tion of ¢) we also have m;¢ = |n]. Thus F;(¢)(n1,...nq,) C ¢(n1,...n,,) for all ny,...n,,, thus F;(¢) C m¢
and hence ¢ is a prefixed point.

Soundness

We need to show that if (d,e) —* (d,n) then C[e]d0 = |n|. Definitely it is enough to show that if (d,e) —
(d,e"), then C[e]o) = C[e']é0. The proof of this goes by induction on the height of the derivation of
(d,e) — (d,e').
Base of induction. We show only two cases:

e (d,n1 ®n2) — (d,n). C[ny ®na]dd = |n1] &1 |n2| = |n].

o (d, filn1,...,nq,)) — (d,e;{n1/x1,...,nq,/%a;}). Then by definition of § we have

Clfi(n1,...,ng,)]00 = (m6)(n1,...,nq;) = Cle;]60{z1 — n1, ..., zq,

i

— g, }
by applying the substitution lemma we have

Clei]o0{z1 — n1,...,xq; — ng, } = Clei{ni/z1,...na, /Ta; }]
And finally we get C[fi(n1,...,n4,)]00 = Clei{n1/z1,. . .14, /Ta, }]-

Now we need to prove the induction step. We consider only the case when the expression is of the form
e1 @ eq, other cases are similar. Let (d,e; @ e3) — (d,e] @ ez). Then we know that (d,e;) — (d,e}).
Thus by the induction hypothesis C[e]]é0) = C[e1]60. And therefore Cle; @ e2]00) = Cle1]00 @ Cle2]dd =
Cle1]60 @ Cle2]od = Cle} @ e2]60.

Comparison of Denotational and Operational Semantics

Operational Denotational (fixed-pt)
allowed transition between translates syntax into a model
syntactic forms
results are just syntax: results are domain elements:
easy to define harder to define
easily express simple non-determinism: powerdomains,
concurrency and non-determinism (sm-step) | concurrency: scheduling
termination behavior not obvious termination behavior implicit in domain
does not explain compilation gives insight: e.g. fixed points
signal extra pass or back-patch

