CS611 Lecture 14 Meta-Language 09/25/00
Scribe: Martin Pal and Sunny Gleason Lecturer: Andrew Myers

What we have
In the last lecture we showed how to construct complex CPO’s from simpler CPO’s.
e if Dy, Ds,...,D,, are CPO’s then so is (D1 x Da X ... X D),
e if D1, Ds,...,D,, are CPO’s then so is (D1 + D2+ ...+ D,),
e if Disa CPO, then D, ={|d| | d € D} U{L}is a CPO.
e if Fis a CPO, then the space D — F of all continuous functions from D to E is a CPO.

Moreover, D is pointed, and if E and Dy, ..., D,, are pointed CPQO’s, then so are (D1 X Dy X ... x D,) and
D — E. We can form expressions like this in our metalanguage:

e constants u € U, true,false € T, where T =U + U, 0,1,2,... € Z

lifting |n |

tupling (-,...,-) and projection 7;

injection in;(-)

application (), composition - o -
e (continuous) functions curry and fix.

One more tool we need is to be able to use abstraction — form functions from open terms using the A operator.

Abstraction

We would like to use the construct Az € D. e. Thus we’d appreciate a theorem saying that if the expression
e is continuous (in some sense), then Az € D. e is also continuous. In order to do this we first need to define
what does it mean for an expression e which possibly contains free variables to be continuous.

Definition. Expression e is continuous in variable z € D iff for arbitrary values of all other variables,
the function Az € D. e is continuous (we need to worry only about variables that are free in ¢). Expression
e is continuous iff it is continuous in all variables (again, only variables free in e matter).

Theorem. If e is an expression in our metalanguage built from constants, continuous functions and
variables using tuple construction, application and abstraction, then e is continuous in all variables.

We prove by induction on structure of e that e is continuous in its variables. Assume that all subexpres-
sions of e are continuous in all their variables. If e is a . ..

e continuous function like curry, fix or m;, there is nothing to prove.
e constant ¢: Az € D. ¢ is a constant function, and thus continuous
e variable y = z: Az € D. x is identity on D

e variable y # x: Ax € D. y is constant function

e tuple (e1,...,e,): From induction hypothesis we know that Az € D. e; is continuous for i = 1,...,n.
YFrom the previous lecture we know that Az € D. (ej,...,e,) is continuous in z as long as each of
Ax € D. e; is continuous in .

e application ¢(e’), where ¢ is a continuous function: By the induction hypothesis, Az € D. €’ is contin-
uous. Thus, Az € D. ¢(e') = colx € D. € is continuous, since composition of continuous functions is
continuous.

e abstraction \y € E. ¢/, where y = x: Az € DAy € E. ¢’ = \x € DXz € D. €' is a constant function,
thus continuous

e abstraction Ay € E. €/, where y # x: From induction hypothesis, e’ is continuous, thus e'{mp/x}
is continuous and also e'{mp/x}{map/y} is continuous in its variables. Since \x € D. \y € E. ¢’ =
curry(Ap € D x E. e'{mp/x}{map/y}) and curry maps continuous functions to continuous functions,
Ax € D. \y € E. € is also continuous.

Note that application of e; to es is e1(e2) = apply({e1,e2)) and fix e is an application of a continuous
function fix to e, so both are covered by the cases above.

REC

Let’s apply the metalanguage to define the semantics of a simple language REC. A program in REC consists
of a declaration of functions:

d:= fi(z1,22,...,2a,) = €1, - , fru(T1,22,...,Za,) = €n

where each expression on the right-hand side of each function definition has the form

e:=n|x|e®ey |ifz ey then e; else ez | fi(er,...,eq;)

and an expression e. Thus, a program is a pair (d,e).

An Example

We can write a REC program for computing the next prime number after 1000 (note: true=0, false=1)

filn,m) = ifz m*m > n then 0 else ifz n%m then 1 else fi(n,m + 1)
fa(n) = ifz fi(n,2) then n else fo(n+1)
Jf2(1000)

Thus REC is expressive enough to handle recursive functions and we can code up loops of them.

Operational semantics of REC

We define a configuration of a program to be a pair (d, e), where d are the function definitions and e is an
expression.
Interesting cases of rules:

(d,n1 ®n2) — (d,n n=n; Ons
(d,ifz n then e; else e3) — (d,e1) n=0
(d,ifz n then e, else e3) — (d,e2) n #0
d, filn1,...,nq;)) — (d,ei{ni/x1,...,nq,/Ta,})

Note that we need no rule for (d,z) —7?, since we always substitute away free variables.

CBV Denotational semantics

Suppose we are given values of variables (p) and meaning of functions (¢) appearing our language. Formally,

we have
p € Env = (Var — 2Z)

$peFenv= (2% = Z,)x ... x (2% —Z)
C[e] € Denotation = Fenv — Env — Z

Then we can define the meaning C[e]¢p of an expression e inductively as follows:

Clnlep = |[n]
Clzlgp = [p(x)]
Cleo @ ei]gp = Cleolgp @1 Cler]dp
Clifz ey then ey else ex]dp = let n = Cleg]¢p.if n =0 then Cle1]¢p else Clez]dp

Clfiler, ... eq;)]0p let ny = Clei]¢p...let ng, = Cleq,;]op.

(m:0)((Clerlep, - - ., Clea,]¢p))
Of course, we would like to find ¢ such that its i-th component has the same meaning as e;:
7T7;¢:Ay17"'7yai EZ' C[[€1H¢p[$1 '_)y17"'7ma/1', '_)y(lq]

for every i = 1,...,n and every p.
For every p, this defines an equation

¢: <>\’U€Za’1.C[[€1]]¢p[x1 = TV,...,Tq, '_)7Ta1v]a

v € Zo. Clen]oplrr — mv, ..., Tq, — Ta,V])

The () is a variable environment with no bindings — no variable is defined. We take p =) and find a fixed
point:

§ = fix e (2% - Z)x...x (2" — Z]).
(A € Z9. Cle1]dplry — miv, ..., Tay — Tay],
Av € Zn. C[[enﬂ¢p[x1 = mMY,...,Zq, 7Tanv]>

Since for a fixed expression e, C[e,] is built using only allowed operations, it is continuous. The domain
(29 — Z)x...x (2% — Z)) is pointed, thus we are guaranteed to find the least fixed point 6. We may
thus define the meaning of an expression to be C[e]d0.

