
CS611 Lecture 14 Meta-Language 09/25/00
Scribe: Martin Pal and Sunny Gleason Lecturer: Andrew Myers

What we have

In the last lecture we showed how to construct complex CPO’s from simpler CPO’s.

• if D1, D2, . . . , Dn, are CPO’s then so is (D1 × D2 × . . . × Dn),

• if D1, D2, . . . , Dn, are CPO’s then so is (D1 +D2 + . . .+Dn),

• if D is a CPO, then D⊥ = {�d� | d ∈ D} ∪ {⊥} is a CPO.
• if E is a CPO, then the space D → E of all continuous functions from D to E is a CPO.

Moreover, D⊥ is pointed, and if E and D1, . . . , Dn are pointed CPO’s, then so are (D1 ×D2× . . .×Dn) and
D → E. We can form expressions like this in our metalanguage:

• constants u ∈ U , true, false ∈ T , where T = U + U , 0, 1, 2, . . . ∈ Z
• lifting �n�
• tupling 〈·, . . . , ·〉 and projection πi

• injection ini(·)
• application ·(·), composition · ◦ ·
• (continuous) functions curry and fix.

One more tool we need is to be able to use abstraction – form functions from open terms using the λ operator.

Abstraction

We would like to use the construct λx ∈ D. e. Thus we’d appreciate a theorem saying that if the expression
e is continuous (in some sense), then λx ∈ D. e is also continuous. In order to do this we first need to define
what does it mean for an expression e which possibly contains free variables to be continuous.

Definition. Expression e is continuous in variable x ∈ D iff for arbitrary values of all other variables,
the function λx ∈ D. e is continuous (we need to worry only about variables that are free in e). Expression
e is continuous iff it is continuous in all variables (again, only variables free in e matter).

Theorem. If e is an expression in our metalanguage built from constants, continuous functions and
variables using tuple construction, application and abstraction, then e is continuous in all variables.
We prove by induction on structure of e that e is continuous in its variables. Assume that all subexpres-

sions of e are continuous in all their variables. If e is a . . .

• continuous function like curry, fix or πi, there is nothing to prove.

• constant c: λx ∈ D. c is a constant function, and thus continuous

• variable y = x: λx ∈ D. x is identity on D

• variable y �= x: λx ∈ D. y is constant function

• tuple 〈e1, . . . , en〉: From induction hypothesis we know that λx ∈ D. ei is continuous for i = 1, . . . , n.
〉From the previous lecture we know that λx ∈ D. 〈e1, . . . , en〉 is continuous in x as long as each of
λx ∈ D. ei is continuous in x.

1

• application c(e′), where c is a continuous function: By the induction hypothesis, λx ∈ D. e′ is contin-
uous. Thus, λx ∈ D. c(e′) = c ◦ λx ∈ D. e′ is continuous, since composition of continuous functions is
continuous.

• abstraction λy ∈ E. e′, where y = x: λx ∈ Dλy ∈ E. e′ = λx ∈ Dλx ∈ D. e′ is a constant function,
thus continuous

• abstraction λy ∈ E. e′, where y �= x: From induction hypothesis, e′ is continuous, thus e′{π1p/x}
is continuous and also e′{π1p/x}{π2p/y} is continuous in its variables. Since λx ∈ D. λy ∈ E. e′ =
curry(λp ∈ D × E. e′{π1p/x}{π2p/y}) and curry maps continuous functions to continuous functions,
λx ∈ D. λy ∈ E. e′ is also continuous.

Note that application of e1 to e2 is e1(e2) = apply(〈e1, e2〉) and fix e is an application of a continuous
function fix to e, so both are covered by the cases above.

REC

Let’s apply the metalanguage to define the semantics of a simple language REC. A program in REC consists
of a declaration of functions:

d := f1(x1, x2, . . . , xa1) = e1, . . . , fn(x1, x2, . . . , xan) = en

where each expression on the right-hand side of each function definition has the form

e := n | x | e0 ⊕ e1 | ifz e0 then e1 else e2 | fi(e1, . . . , eai)

and an expression e. Thus, a program is a pair (d, e).

An Example

We can write a REC program for computing the next prime number after 1000 (note: true=0, false=1)

f1(n, m) = ifz m ∗ m > n then 0 else ifz n%m then 1 else f1(n, m+ 1)
f2(n) = ifz f1(n, 2) then n else f2(n+ 1)

f2(1000)

Thus REC is expressive enough to handle recursive functions and we can code up loops of them.

Operational semantics of REC

We define a configuration of a program to be a pair (d, e), where d are the function definitions and e is an
expression.
Interesting cases of rules:

(d, n1 ⊕ n2) → (d, n) n = n1 ⊕ n2

(d, ifz n then e1 else e2) → (d, e1) n = 0
(d, ifz n then e1 else e2) → (d, e2) n �= 0

(d, fi(n1, . . . , nai)) → (d, ei{n1/x1, . . . , nai/xai})
Note that we need no rule for (d, x)→?, since we always substitute away free variables.

2

CBV Denotational semantics

Suppose we are given values of variables (ρ) and meaning of functions (φ) appearing our language. Formally,
we have

ρ ∈ Env = (Var → Z)
φ ∈ Fenv = (Za1 → Z⊥)× . . . × (Zan → Z⊥)
C[[e]] ∈ Denotation = Fenv → Env → Z⊥

Then we can define the meaning C[[e]]φρ of an expression e inductively as follows:

C[[n]]φρ = �n�
C[[x]]φρ = �ρ(x)�

C[[e0 ⊕ e1]]φρ = C[[e0]]φρ ⊕⊥ C[[e1]]φρ
C[[ifz e0 then e1 else e2]]φρ = let n = C[[e0]]φρ.if n = 0 then C[[e1]]φρ else C[[e2]]φρ

C[[fi(e1, . . . , eai)]]φρ = let n1 = C[[e1]]φρ . . . let nai = C[[eai]]φρ.
(πiφ)(〈C[[e1]]φρ, . . . , C[[eai]]φρ〉)

Of course, we would like to find φ such that its i-th component has the same meaning as ei:

πiφ = λy1, . . . , yai ∈ Z. C[[ei]]φρ[x1 �→ y1, . . . , xai �→ yai]

for every i = 1, . . . , n and every ρ.
For every ρ, this defines an equation

φ = 〈λv ∈ Za1 . C[[e1]]φρ[x1 �→ π1v, . . . , xa1 �→ πa1v],
. . .
λv ∈ Zan . C[[en]]φρ[x1 �→ π1v, . . . , xan �→ πanv]〉

The ∅ is a variable environment with no bindings – no variable is defined. We take ρ = ∅ and find a fixed
point:

δ = fix λφ ∈ (Za1 → Z⊥)× . . . × (Zan → Z⊥).
〈λv ∈ Za1 . C[[e1]]φρ[x1 �→ π1v, . . . , xa1 �→ πa1v],
. . .
λv ∈ Zan . C[[en]]φρ[x1 �→ π1v, . . . , xan �→ πanv]〉

Since for a fixed expression e, C[[en]] is built using only allowed operations, it is continuous. The domain
(Za1 → Z⊥)× . . .× (Zan → Z⊥) is pointed, thus we are guaranteed to find the least fixed point δ. We may
thus define the meaning of an expression to be C[[e]]δ∅.

3

