What we have

In the last lecture we showed how to construct complex CPO's from simpler CPO's.

- if $D_{1}, D_{2}, \ldots, D_{n}$, are CPO's then so is $\left(D_{1} \times D_{2} \times \ldots \times D_{n}\right)$,
- if $D_{1}, D_{2}, \ldots, D_{n}$, are CPO's then so is $\left(D_{1}+D_{2}+\ldots+D_{n}\right)$,
- if D is a CPO, then $D_{\perp}=\{\lfloor d\rfloor \mid d \in D\} \cup\{\perp\}$ is a CPO.
- if E is a CPO, then the space $D \rightarrow E$ of all continuous functions from D to E is a CPO.

Moreover, D_{\perp} is pointed, and if E and D_{1}, \ldots, D_{n} are pointed CPO's, then so are ($D_{1} \times D_{2} \times \ldots \times D_{n}$) and $D \rightarrow E$. We can form expressions like this in our metalanguage:

- constants $u \in U$, true, false $\in T$, where $T=U+U, 0,1,2, \ldots \in \mathcal{Z}$
- lifting $\lfloor n\rfloor$
- tupling $\langle\cdot, \ldots, \cdot\rangle$ and projection π_{i}
- injection $\mathrm{in}_{i}(\cdot)$
- application $\cdot(\cdot)$, composition $\cdot \circ$.
- (continuous) functions curry and fix.

One more tool we need is to be able to use abstraction - form functions from open terms using the λ operator.

Abstraction

We would like to use the construct $\lambda x \in D . e$. Thus we'd appreciate a theorem saying that if the expression e is continuous (in some sense), then $\lambda x \in D$. e is also continuous. In order to do this we first need to define what does it mean for an expression e which possibly contains free variables to be continuous.

Definition. Expression e is continuous in variable $x \in D$ iff for arbitrary values of all other variables, the function $\lambda x \in D . e$ is continuous (we need to worry only about variables that are free in e). Expression e is continuous iff it is continuous in all variables (again, only variables free in e matter).

Theorem. If e is an expression in our metalanguage built from constants, continuous functions and variables using tuple construction, application and abstraction, then e is continuous in all variables.

We prove by induction on structure of e that e is continuous in its variables. Assume that all subexpressions of e are continuous in all their variables. If e is a \ldots

- continuous function like curry, fix or π_{i}, there is nothing to prove.
- constant $c: \lambda x \in D . c$ is a constant function, and thus continuous
- variable $y=x: \lambda x \in D . x$ is identity on D
- variable $y \neq x: \lambda x \in D . y$ is constant function
- tuple $\left\langle e_{1}, \ldots, e_{n}\right\rangle$: From induction hypothesis we know that $\lambda x \in D$. e_{i} is continuous for $i=1, \ldots, n$. \rangle From the previous lecture we know that $\lambda x \in D .\left\langle e_{1}, \ldots, e_{n}\right\rangle$ is continuous in x as long as each of $\lambda x \in D . e_{i}$ is continuous in x.
- application $c\left(e^{\prime}\right)$, where c is a continuous function: By the induction hypothesis, $\lambda x \in D . e^{\prime}$ is continuous. Thus, $\lambda x \in D . c\left(e^{\prime}\right)=c \circ \lambda x \in D . e^{\prime}$ is continuous, since composition of continuous functions is continuous.
- abstraction $\lambda y \in E . e^{\prime}$, where $y=x: \lambda x \in D \lambda y \in E . e^{\prime}=\lambda x \in D \lambda x \in D . e^{\prime}$ is a constant function, thus continuous
- abstraction $\lambda y \in E . e^{\prime}$, where $y \neq x$: From induction hypothesis, e^{\prime} is continuous, thus $e^{\prime}\left\{\pi_{1} p / x\right\}$ is continuous and also $e^{\prime}\left\{\pi_{1} p / x\right\}\left\{\pi_{2} p / y\right\}$ is continuous in its variables. Since $\lambda x \in D . \lambda y \in E . e^{\prime}=$ curry $\left(\lambda p \in D \times E . e^{\prime}\left\{\pi_{1} p / x\right\}\left\{\pi_{2} p / y\right\}\right)$ and curry maps continuous functions to continuous functions, $\lambda x \in D . \lambda y \in E . e^{\prime}$ is also continuous.

Note that application of e_{1} to e_{2} is $e_{1}\left(e_{2}\right)=\operatorname{apply}\left(\left\langle e_{1}, e_{2}\right\rangle\right)$ and fix e is an application of a continuous function fix to e, so both are covered by the cases above.

REC

Let's apply the metalanguage to define the semantics of a simple language REC. A program in REC consists of a declaration of functions:

$$
d:=f_{1}\left(x_{1}, x_{2}, \ldots, x_{a_{1}}\right)=e_{1}, \ldots, f_{n}\left(x_{1}, x_{2}, \ldots, x_{a_{n}}\right)=e_{n}
$$

where each expression on the right-hand side of each function definition has the form

$$
e:=n|x| e_{0} \oplus e_{1} \mid \text { ifz } e_{0} \text { then } e_{1} \text { else } e_{2} \mid f_{i}\left(e_{1}, \ldots, e_{a_{i}}\right)
$$

and an expression e. Thus, a program is a pair (d, e).

An Example

We can write a REC program for computing the next prime number after 1000 (note: true $=0$, false $=1$)

$$
\begin{aligned}
& f_{1}(n, m)=\text { ifz } m * m>n \text { then } 0 \text { else ifz } n \% m \text { then } 1 \text { else } f_{1}(n, m+1) \\
& f_{2}(n)=\text { ifz } f_{1}(n, 2) \text { then } n \text { else } f_{2}(n+1) \\
& f_{2}(1000)
\end{aligned}
$$

Thus REC is expressive enough to handle recursive functions and we can code up loops of them.

Operational semantics of REC

We define a configuration of a program to be a pair (d, e), where d are the function definitions and e is an expression.

Interesting cases of rules:

$$
\begin{aligned}
\left(d, n_{1} \oplus n_{2}\right) & \rightarrow(d, n) & n=n_{1} \oplus n_{2} \\
\left(d, \text { ifz } n \text { then } e_{1} \text { else } e_{2}\right) & \rightarrow\left(d, e_{1}\right) & n=0 \\
\left(d, \text { ifz } n \text { then } e_{1} \text { else } e_{2}\right) & \rightarrow\left(d, e_{2}\right) & n \neq 0 \\
\left(d, f_{i}\left(n_{1}, \ldots, n_{a_{i}}\right)\right) & \rightarrow\left(d, e_{i}\left\{n_{1} / x_{1}, \ldots, n_{a_{i}} / x_{a_{i}}\right\}\right) &
\end{aligned}
$$

Note that we need no rule for $(d, x) \rightarrow$?, since we always substitute away free variables.

CBV Denotational semantics

Suppose we are given values of variables (ρ) and meaning of functions (ϕ) appearing our language. Formally, we have

$$
\begin{aligned}
& \rho \in \operatorname{Env}=(\operatorname{Var} \rightarrow \mathcal{Z}) \\
& \phi \in \text { Fenv }=\left(\mathcal{Z}^{a_{1}} \rightarrow \mathcal{Z}_{\perp}\right) \times \ldots \times\left(\mathcal{Z}^{a_{n}} \rightarrow \mathcal{Z}_{\perp}\right) \\
& \mathcal{C} \llbracket \rrbracket \in \text { Denotation }=\text { Fenv } \rightarrow \text { Env } \rightarrow \mathcal{Z}_{\perp}
\end{aligned}
$$

Then we can define the meaning $\mathcal{C} \llbracket e \rrbracket \phi \rho$ of an expression e inductively as follows:

$$
\begin{aligned}
\mathcal{C} \llbracket n \rrbracket \phi \rho= & \lfloor n\rfloor \\
\mathcal{C} \llbracket x \rrbracket \phi \rho= & \lfloor\rho(x)\rfloor \\
\mathcal{C} \llbracket e_{0} \oplus e_{1} \rrbracket \phi \rho= & \mathcal{C} \llbracket e_{0} \rrbracket \phi \rho \oplus \perp \mathcal{C} \llbracket e_{1} \rrbracket \phi \rho \\
\mathcal{C} \llbracket \text { ifz } e_{0} \text { then } e_{1} \text { else } e_{2} \rrbracket \phi \rho= & \text { let } n=\mathcal{C} \llbracket e_{0} \rrbracket \phi \rho \text {.if } n=0 \text { then } \mathcal{C} \llbracket e_{1} \rrbracket \phi \rho \text { else } \mathcal{C} \llbracket e_{2} \rrbracket \phi \rho \\
\mathcal{C} \llbracket f_{i}\left(e_{1}, \ldots, e_{a_{i}}\right) \rrbracket \phi \rho= & \text { let } n_{1}=\mathcal{C} \llbracket e_{1} \rrbracket \phi \rho \ldots \text { let } n_{a_{i}}=\mathcal{C} \llbracket e_{a_{i} \rrbracket} \rrbracket \phi \rho . \\
& \left(\pi_{i} \phi\right)\left(\left\langle\mathcal{C} \llbracket e_{1} \rrbracket \phi \rho, \ldots, \mathcal{C} \llbracket e_{a_{i}} \rrbracket \phi \rho\right)\right)
\end{aligned}
$$

Of course, we would like to find ϕ such that its i-th component has the same meaning as e_{i} :

$$
\pi_{i} \phi=\lambda y_{1}, \ldots, y_{a_{i}} \in \mathcal{Z} . \mathcal{C} \llbracket e_{i} \rrbracket \phi \rho\left[x_{1} \mapsto y_{1}, \ldots, x_{a_{i}} \mapsto y_{a_{i}}\right]
$$

for every $i=1, \ldots, n$ and every ρ.
For every ρ, this defines an equation

$$
\begin{aligned}
\phi= & \left\langle\lambda v \in \mathcal{Z}^{a_{1}} . \mathcal{C} \llbracket e_{1} \rrbracket \phi \rho\left[x_{1} \mapsto \pi_{1} v, \ldots, x_{a_{1}} \mapsto\right.\right. \\
& \ldots \\
& \left.\pi_{a_{1}} v\right], \\
& \lambda v \in \mathcal{Z}^{a_{n}} . \mathcal{C} \llbracket e_{n} \rrbracket \phi \rho\left[x_{1} \mapsto \pi_{1} v, \ldots, x_{a_{n}} \mapsto \pi_{a_{n}} v \rrbracket\right\rangle
\end{aligned}
$$

The \emptyset is a variable environment with no bindings - no variable is defined. We take $\rho=\emptyset$ and find a fixed point:

$$
\begin{aligned}
\delta= & \text { fix } \lambda \phi \in\left(\mathcal{Z}^{a_{1}} \rightarrow \mathcal{Z} \mathcal{Z}_{\perp}\right) \times \ldots \times\left(\mathcal{Z}^{a_{n}} \rightarrow \mathcal{Z}_{\perp}\right) . \\
& \left\langle\lambda v \in \mathcal{Z}^{a_{1}} \cdot \mathcal{C} \llbracket e_{1} \rrbracket \phi \rho\left[x_{1} \mapsto \pi_{1} v, \ldots, x_{a_{1}} \mapsto \pi_{a_{1}} v\right],\right. \\
& \ldots \\
& \left.\lambda v \in \mathcal{Z}^{a_{n}} \cdot \mathcal{C} \llbracket e_{n} \rrbracket \phi \rho\left[x_{1} \mapsto \pi_{1} v, \ldots, x_{a_{n}} \mapsto \pi_{a_{n}} v\right]\right\rangle
\end{aligned}
$$

Since for a fixed expression $e, \mathcal{C} \llbracket e_{n} \rrbracket$ is built using only allowed operations, it is continuous. The domain $\left(\mathcal{Z}^{a_{1}} \rightarrow \mathcal{Z}_{\perp}\right) \times \ldots \times\left(\mathcal{Z}^{a_{n}} \rightarrow \mathcal{Z}_{\perp}\right)$ is pointed, thus we are guaranteed to find the least fixed point δ. We may thus define the meaning of an expression to be $\mathcal{C} \llbracket e \rrbracket \delta \emptyset$.

