
CS611 Lecture 13 Domain Constructions 9/22/00
Scribe: Daniel Kifer, Yanling Wang Lecturer: Andrew Myers

1 Meta Language

We can take fixed points of continuous functions in a cpo. Fixed points are needed for definitions of structures
that we can think of as loops or cyclical graphs:

• control flow: while loop

• recursive functions

• recursive data types

Because loop-like constructs appear in programming languages so often, we need to take fixed points. In
addition, because we are defining meaning functions inductively, most or all of the definitions for individual
expression forms need to produce continuous functions. Therefore, we need to find an easy way to show that
functions are continuous.

We will define a restricted language so that all functions expressible in it are continuous. It’s a syntactic
restriction on what functions we can write down. Functions (and other domain elements) defined in this
language will look as though they are being defined by a programming language. However, there is no notion
of evaluation for this language: the functions being defined simply are.

The Meta-Language will look like a typed language, because we will explicitly indicate what domains
meta-variables are members of. It’s not quite the same as the types that will show up in ordinary languages.
For example, the ML pair type T1∗T2 is not modeled by the product domain T1×T2. The types in the source
language are syntactic elements that can be mapped to domains; these domains have ordering relations
defined on them. The Meta-language has a set of constructions that we can use to create new domains from
existing ones.

2 Lifting

For now, the domains we talk about are cpo’s. We are going to define several different ways to construct a
cpo. To specify a cpo, we need the following:

• the set of underlying elements

• the ordering on the elements

• a demonstration that the ordering is complete: any chain in the new domain will have a supremum in
the new domain

• to make the construction useful for the meta-language, we also define operations associated with the
domains

The lifting construction is perhaps the simplest way to construct a new CPO given an existing one. If
we have some cpo domain D, we can add new bottom element to form a pointed cpo D⊥. We modify the
ordering relation so that ∀d ∈ D⊥, ⊥� d. Clearly if D is not pointed then D⊥ is. If D is pointed, the new
bottom element is even smaller than the original ⊥ in D.

To distinguish between an element in D and in D⊥, we use the notation �di	∈D⊥ for di∈D. For example,
if D is pointed, D⊥ has a ⊥ from the old D. We write it as � ⊥ 	 to distinguish it from the new ⊥ we added.

What is the ordering relation in D⊥? We need to:
We preserve the ordering relation in D, so �di	 � �dj	 ⇔ di � dj and we have ⊥� �di	 for ∀di ∈ D. D⊥

is complete because chain in D⊥ has a supremum in D ⊥ since it either looks like a chain in D or like a
chain in D with a ⊥ in the beginning.

1

3 Discrete cpos

The ordering relation for discrete cpos (booleans, natural numbers, integers, etc.) is equality. The functions
over discrete cpos are continuous because the chains consist of only one element. We can only take fixed
points of functions that map pointed cpos to pointed cpos. Therefore we must lift discrete cpos to take fixed
points.

We also need to extend functions to pointed cpos:
If f∈D→E, then f⊥∈D⊥→E⊥, f∗∈D⊥→E (assuming E is pointed) are
f⊥ = λd∈D⊥, if d =⊥ then ⊥ else f(d)
f∗ = λd∈D⊥, if d = ⊥ then ⊥ else f(d) (if E is pointed)

If f is continuous, then so is f⊥ and f∗.

4 Let

We define let to be a useful syntax in the following way:

let x = d.e ≡ (λx∈D.e)∗d

This function will return ⊥ when d is ⊥. Remember that x is an element of D but not D⊥.

5 Unit

The simplest nontrivial domain is called the Unit domain; it has one element (u). The ordering relation only
needs to be reflexive: u is related only to itself. The only ω-chain we can get is u � u � u � u � u �
Calculating the LUB of this chain is left to the reader, but it should be clear that a unit domain with a
reflexive ordering relation is a cpo.

Why do we need this unit domain? We can use it do distinguish between termination and nontermination
when a computation does not produce a value. We use u to present termination. It is also used as argument
for functions that need no argument. For example, U→Z is a constant function. Unit domains can be used
to build more complicated domains (for example, booleans).

6 Products

If we have two domains D1 and D2, then D1×D2 is a product domain. The underlying elements in this
domain are tuples that consist of one element from each domain:

〈d1, d2〉 where di∈Di.
The ordering relation on the product domain is:

〈d1, d2〉�〈d′1, d′2〉 iff d1�d′1&d2⊆d′2

Is this a cpo? Given the ordering relation, we first have to show that it is a partially ordered domain. It
is quite obvious that the ordering relation is reflexive, transitive and antisymemtric. We still have to show
that it is complete: any chain in the product domain has an LUB that is also in this domain.

For any chain 〈d1, d2〉 � 〈d′1, d′2〉 � . . . � 〈d(n)
1 , d

(n)
2 〉 � . . .

Clearly d1 � d′1 � . . . � d
(n)
1 � . . . has a least upper bound (call it d∞1) and

d2 � d′2 � . . . � d
(n)
2 � . . . has a least upper bound (call it d∞2)

So 〈d∞1 , d∞2 〉 is the least upper bound of the chain 〈d1, d2〉 � 〈d′1, d′2〉 � . . . � 〈d(n)
1 , d

(n)
2 〉 � . . .

Since 〈d∞1 , d∞2 〉 ∈ D1 × D2 this new domain is also complete.
This can be extended to n-tuples 〈d1, d2, ..., dn〉

We have the following two operations on product domains (These functions are clearly continuous and
monotonic.):

• tupling: 〈d1, d2, ..., dn〉

2

• projection: πi〈d1, d2, ..., dn〉 = di

7 Disjoint Sums

Disjoint sums allow us to have element of one type or another. For example D1 + D2 lets us have elements
of D1 or D2. Each element is tagged with an injection function {ini(di)|di ∈ Di} so we know which domain
it comes from. The actual tagging function is irrelevant (as long as it works!). One possibility is λd.〈i, d〉.

The injection function preserves the original ordering of the individual domains.
ini(dm) � inj(dn) iff i = j, dm � dn The injection function is clearly continuous. Any chain in D1 + D2 has
to stay in one domain Di, and the injected version of the supremum in the domain Di is the LUB of this
chain. This can be easily extended to multi-domain sums.

Clearly the sum domain is a cpo, but has no ⊥ element which is less than everything (otherwise ⊥∈ Di

for some i, and so if d ∈ Dj where j �= i, d can’t be compared to ⊥). If we need the fixed point, we must
lift the sum. We can lift it by adding a new ⊥. If D1 and D2 both have the ⊥ element, we can also glue
them together and make them share it.

The injection function is necessary because it can distinguish between identical domains and also domains
that may share elements but have different ordering relations. For example: T = U + U , true = in1(u),
false = in2(u). We can NOT simply glue the ordering relations together.

Sums can be unpacked with the case construction:
case e of x1.e1|x2.e2 ≡ case e of D1(x1).e1|D2(x2).e2 where e ∈ D1 + D2. If e = ini(di), the value of this
expression will be evaluated as (λxi ∈ Di.ei)di. Case is a continuous function of e if all fi ∈ Di → E =
(λxi ∈ Di.ei) are continuous.

8 Continuous Functions

For any two cpo’s D and E, we define D → E as the domain of continuous functions that map D to E. We
define a pointwise ordering for two functions f ,g ∈ D → E (a subset of ED - the set of all functions that
map D → E):

f � g iff ∀d, f(d) � g(d)
Given the ordering relations on the functions, the LUB of any chain exists:

�n∈ωfn = λd ∈ D. �n∈ω fn(d)
but it is necessary to show that this LUB is continuous and therefore an element of D → E:

(λd ∈ D. �n∈ω fn(d))(�m∈ωdm) = �m∈ω(λd ∈ D. �n∈ω fn(d))(dm)
Lemma: If f is monotonic and continuous, then

�n �mfn(dm) = �nfn(dn) = �m �n fn(dm)
Let enm = fn(dm)
n ≤ n′, m ≤ m′ ⇒ enm � en′m′

enm � en′n′ for n′ = max(m, n), so �n,menm � �nenm

enn �m enm, so �nenn � �n �m enm, �m �n enm

�menm � �n,menm, so �n �m enm � �n,menm

Proof:
(λd ∈ D. �n∈ω fn(d))(�m∈ωdm)
= �n∈ωfn(�m∈ωdm)
= �n∈ω �m∈ω fn(dm)
= �n∈ωfn(dn)
= �m∈ω �n∈ω fn(dm)
= �m∈ω(λd ∈ D . �n∈ω fn(d))(dm)

9 Operations on functions

We have the following new operations in our Meta-Language:
apply ∈ (D → E)× D → E λp.(π1p)(π2p)

3

curry ∈ ((D × E) → F) → (D → E → F)
= λf ∈ (D × E) → F.λd ∈ D.λe ∈ E.f〈d, e〉

compose = ◦ ∈ (D → E) × (E → F) → (D → F)
= λ〈f, g〉.λd ∈ D.f(g(d))

fix ∈ (D → D) → D (D pointed)
= λg ∈ D → D. �n gn(⊥)
= �nλg ∈ D → D.gn(⊥)

fix is a continuous function since it takes the LUB of continuous functions.

4

