General course information was given at the beginning of lecture. For details, please refer to the web site at courses.cs.cornell.edu/cs611 (or, from outside of the department, www.cs.cornell.edu/cs611.)

IMP

- discussed in Chap. 2 of Winskel
- a simple imperative language (commands cause side-effects)
- all variables are pre-defined (cannot introduce new variables)
- variables can only take integer values

Syntax

The following abstract syntax defines a legal program in IMP. IMP has 3 syntactic sets:

- 1) **AExp**
 - The set of legal arithmetic expressions, a
 - In English, a is constructed by initially including all variables and integers.
 - The set is then closed under addition, subtraction, and multiplication.
 - In Backus-Naur Form (BNF),

 $a ::= n | X | a_0 + a_1 | a_0 - a_1 | a_0 * a_1$

where $n \in integers$, $X \in LOC$ (location/variable), and $a_0, a_1 \in AExp$

2) **BExp**

- The set of legal boolean expressions, **b**
- In English, b contains comparisons and is closed under conjunction, disjunction and negation.
- In BNF,

 $\mathbf{b} ::= \mathbf{a}_0 = \mathbf{a}_1 \mid \mathbf{a}_0 \le \mathbf{a}_1 \mid \mathbf{b}_0 \lor \mathbf{b}_1 \mid \mathbf{b}_0 \land \mathbf{b}_1 \mid \neg b_0$

where $a_0, a_1 \in AExp, b_0, b_1 \in BExp$ • true and false are encoded as integers

3) **Com**

- The set of legal commands, c
- In English, a command can be 'do nothing' (skip), an assignment, an if/else clause, a while loop or a sequence of commands.
- In BNF,
- $c ::= skip \mid X := a \mid if b then c_0 else c_1 \mid while b do c \mid c_0; c_1$
- where $X \in LOC$ (location/variable), $a \in AExp$, $b \in BExp$, and $c, c_0, c_1 \in Com$
- A legal program consists of a single command (usually c_0 ; c_1)

Example: while $x \neq y$ do if $x \leq y$ then y := y - x else x = x - y

We use parentheses to clarify how to parse an expression. However, parentheses are not part of the syntax of the language — we assume that all elements of the syntactic set are expression (parse) trees.

Operational Semantics

- operational semantics define a program's execution
- structural operational semantics associate legal executions with proofs
- structural operational semantics is a compact and convenient method for proving language properties.

A configuration is the information needed to determine how a program will behave. It consists of the command to be executed and the current state of the system. The notation used to represent configurations is $\langle c, \sigma \rangle$, where c is the command about to be executed and σ (a mapping from all variable names to their integer values) is the current state of the system. We will write $\langle c, \sigma \rangle \Downarrow \sigma'$ to mean "the command c can execute in state σ to produce state σ' ".

We will have corresponding statements for arithmetic and boolean expressions:

 $\langle a, \sigma \rangle \Downarrow n$, for some integer n

 $\langle b, \sigma \rangle \Downarrow t$, for some truth value t

We can start to define rules that capture when these statements are true. For "skip" and "X" we have: $\langle skip, \sigma \rangle \Downarrow \sigma$

 $\langle X, \sigma \rangle \Downarrow \sigma(X)$, i.e. the current value of X in the store.

For more complex constructs we need inference rules. An inference rule captures the notion that a set of statements imply another statement. For example, the statement $\langle c_0; c_1, \sigma \rangle \Downarrow \sigma'$ follows from the statements $\langle c_0, \sigma \rangle \Downarrow \sigma''$ and $\langle c_1, \sigma'' \rangle \Downarrow \sigma'$. The implied statement $(\langle c_1, \sigma'' \rangle \Downarrow \sigma')$ is called the conclusion and the other statements are called premises. Unspecified pieces of abstract syntax in the premises, such as σ'' , are called meta-variables. Inference rules are typically written with premises and conclusions separated by a horizontal line as illustrated in the following examples.

Sample Inference Rules

$$\frac{\langle c_0, \sigma \rangle \Downarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \Downarrow \sigma'}{\langle c_1, \sigma'' \rangle \Downarrow \sigma'}$$

$$\frac{\langle a, \sigma \rangle \Downarrow n}{\langle X := a, \sigma \rangle \Downarrow \sigma[X \mapsto n]}$$

$$\frac{\langle b, \sigma \rangle \Downarrow \mathbf{true} \quad \langle c_0, \sigma \rangle \Downarrow \sigma'}{\langle \mathbf{if} b \mathbf{then} c_0 \mathbf{else} c_1, \sigma \rangle \Downarrow \sigma'}$$

Recall that we are representing state as a function from variable names to integers. $\sigma[X \mapsto n]$ is a new function where X is mapped to n, and all other variables are mapped to the values they had in σ .

The conclusion of an inference rule that does not have any premises is called an axiom. The rule for "skip" is an axiom:

 $\langle \mathbf{skip}, \sigma \rangle \Downarrow \sigma$

IMP Properties

- Turing complete (barely)
- a program will never 'crash'
- evaluation is deterministic
- all expressions terminate, but commands may not
- no functions or data structures