
CS611 Homework 6 DUE: December 1, 2000

What to turn in

Turn in the assignment during class on the due date.

1. Subtyping and recursion (20 pts.)

We saw in class that objects could be modeled roughly as recursive record types of the form µX.{l1 :
τ1, . . . , ln : τn}. This formulation gives some insight into sound subtyping rules for object types in
object-oriented languages. Let us consider the typed lambda calculus extended with recursive types,
record types, and subtyping. Any program that is well-formed in the language without recursive types
(for which rules were given in class) should also be well-formed in this extended language.

The rules for subtyping in this language can be obtained by modifying the rules given earlier for type
equivalence in the typed lambda calculus with recursive types. As for type equivalence, we define a
context E containing a set of assumed subtype relations τ1 ≤ τ2, and use the following rule to terminate
the unfolding of recursive types:

E, τ1 ≤ τ2 � τ1 ≤ τ2

(a) (2 pts.) Give the inference rule defining the subtype judgment E � τ1 → τ2 ≤ τ ′
1 → τ ′

2.

(b) (2 pts.) Give the inference rules defining the subtype judgements E � µX.τ ≤ τ ′ and E � τ ′ ≤
µX.τ , where τ ′ does not have the form µY.τ ′′.

(c) (3 pts.) Give the inference rule defining the subtype judgement E � µX.τ ≤ µY.τ ′.

(d) (5 pts.) Consider the following two types:

point = µP.{x : int, y : int}
colored point = µQ.{x : int, y : int, color : int}

According to the rules you have given, we should have colored point ≤ point. Say whether each of
the following putative subtype relationships also holds. If the relationship holds, give a subtype
derivation (proof tree). If it does not hold, give a counter-example: code demonstrating that the
subtype relationship would be unsafe.

i. µP.{x : P} ≤ µQ.{x : Q}
ii. µP.{mv : int → P, y : int} ≤ µQ.{mv : int → Q}
iii. µP.{eq : P → bool, y : int} ≤ µQ.{eq : Q → bool}
iv. µP.{a : ref P, y : int} ≤ µQ.{a : ref Q} (Note that ref τ ≤ ref τ ′ iff τ ∼= τ ′).
v. µP.{l : P, r : P, v : int} ≤ µQ.{l : Q, r : Q}

(e) (8 pts.) Define a coercion function for the subtype judgment E � µX.τ ≤ µX ′.τ ′. Make sure
that your function definition “bottoms out”. Assume that you have available the tF fixed-point
operator (rec y : τ → τ ′.fn x e).

2. Encoding weak existential types in the polymorphic lambda calculus (30 pts.)

In class we have discussed how existential types can be used as a primitive encapsulation mechanism
that hides some part of a type from code outside the definition of a value. Thus, existential types capture
an important aspect of modular programming. In this problem we will show that weak existential types
can be translated into the polymorphic lambda calculus, using some insights from the Curry-Howard
isomorphism.

Our source language will consist of the simply typed lambda calculus extended with predicative1

existential types:
1The fact that they are predicative is not particularly important for this problem.

1

τ ::= B | X | τ1 → τ2

σ ::= τ | σ1 → σ2 | ∃X.σ

e ::= b | x | λx :σ. e | e1 e2 | pack [X = τ, e] | unpack e as [X, x] in e′

We could easily add more types to the source language but they will not affect this problem in an
interesting way. The typing rules for this language are standard:

∆; Γ, x : σ � x : σ ∆; Γ � b : B

∆; Γ, x :σ � e : σ′ ∆ � σ

∆; Γ � λx :σ. e : σ → σ′
∆; Γ � e1 : σ → σ′ ∆; Γ � e2 : σ

∆; Γ � e1 e2 : σ′

∆; Γ � e : σ{τ/X} ∆ � τ

∆; Γ � pack [X = τ, e] : ∃X.σ

∆; Γ � e : ∃Y.σ1 ∆, X ; Γ, x :σ1{X/Y } � e2 : σ2 X /∈ ∆ ∆ � σ2

∆; Γ � unpack e1 as [X, x] in e2 : σ2

In the unpack rule, the requirement that X is not in ∆ ensures that it does not capture a type variable
mentioned in the context Γ. In addition, the type σ2 must be well-formed in ∆; this prevents values
of the hidden representation type X from leaking out into a context in which they do not make sense.

The target language is the polymorphic lambda calculus, which supports impredicative polymorphism:

τ, σ ::= B | X | τ1 → τ2 | ∀X.σ

e ::= b | x | λx :σ. e | e1 e2 | ΛX.e | e[τ]

The target language has the same typing rules as the source language (except for the rules for pack
and unpack); it also has two rules for supporting polymorphism:

∆, X ; Γ � e : σ X /∈ ∆
∆; Γ � ΛX.e : ∀X.σ

∆; Γ � e : ∀X.σ ∆ � τ

∆; Γ � e[τ] : σ{τ/X}

Note that the rule for type abstraction requires that the new type variable X be fresh, to prevent
capture of type variables appearing in Γ.

The target language and the source language have the usual rules for well-formed type expressions:

∆, X � X ∆ � B

∆ � τ1 ∆ � τ2

∆ � τ1 → τ2

∆ � σ1 ∆ � σ2

∆ � σ1 → σ2

∆, X � σ

∆ � ∀X.σ

∆, X � σ

∆ � ∃X.σ

Your goal in this problem is to provide a typed translation from the source language to the target
language, and to show that this translation works. The typed translation will convert type judgments
in the source language into type judgments in the target language, in such a way that a translated target
program will automatically have a target-language type derivation if its source had a source-language
type derivation.

2

You will define: (1) a translation T [[σ]] that maps source-language types into target-language types;
(2) a translation into the target language for the expression pack [X = τ, e]; (3) a translation for the
expression unpack e as [X, x] in e′. These are the only source-language constructs that are not allowed
in the target language, so the remainder of the translation is largely boilerplate.

The Curry-Howard isomorphism will assist you in constructing this translation. We know that the
type ∃X.σ corresponds to the formula ∃X.φ. We have seen that meaning-preserving program trans-
formations, such as CPS conversion, result in programs whose types are logically equivalent to the
original. From classical logic, we also know a formula that is equivalent to ∃X.φ but uses universals
instead: ¬∀X.¬φ.

(a) (2 pts.) Types whose formulas contain negation can be generated by using continuations, but
our target language has no continuations. Give another formula that is equivalent to ∃X.φ but
contains only logical operators for which there is a target-language equivalent.

(b) (2 pts.) We are translating source-language types σ into target-language types T [[σ]]. What
logically equivalent target-language type should T [[·]] map ∃X.σ to?

(c) (8 pts.)
You will define the important parts of a translation function E [[·]], which when applied to a source-
language type judgement ∆; Γ � e : σ, produces a provable target-language type judgement
∆′; Γ′ � e′ : T [[σ]]. It will be useful to have a semantic function G[[·]] that simply maps all the
types of variables in Γ into the target language: G[[∅]] = ∅, G[[Γ, x :σ]] = G[[Γ]], x :T [[σ]].

Complete the following translation rule for pack. You will need to introduce new variables; add
any premises needed to control the selection of variable names.

E [[∆; Γ � e : σ{τ/X}]] = ?
E [[∆; Γ � pack [X = τ, e] : ∃X.σ]] = ?

(d) (8 pts.)
Complete the following translation rule for unpack.

E [[∆; Γ � e1 : ∃Y.σ1]] = ? E [[∆, X ; Γ, x :σ1{X/Y } � e2 : σ2]] = ?
E [[∆; Γ � unpack e1 as [X, x] in e2 : σ2]] = ?

(e) (2 pts.) Give a concise table explaining the purpose of each use of type abstraction (ΛX.e) and
application (e[τ]) in your translation.

(f) (8 pts.) Show that the expressions that are your translations of pack and unpack are well-formed.
For each translated expression, give a type derivation in which the tops of the proof tree are either
axioms or are judgments that you are assured of having because the source-language expression
is well-formed.

3

