
CS611 Homework 4 DUE: October 23, 2000

What to turn in

Turn in the assignment during class on the due date.

1. Substitution Lemma (10 pts)

Prove Lemma 9.12 in Winskel: that for call-by-name REC+, where C[[·]] is the B3 meaning function,

C[[e]]φρ[x �→ C[[e′]]φρ] = C[[e{e′/x}]]φρ

(Translated into the notation we have been using in class)

2. Static vs. Dynamic Scoping (10 pts)

What is the value of the following uF+let program under static and dynamic scope, respectively? (The if
expression has been written with explicit then and else keywords to make the parsing clear.)

let f = fn n (fn g1 (fn g2
let x = n+10 in
let g = fn u x in
if n=0 then (f 1 g #u)
else if n=1 then (f 2 g1 g)

else (g1 #u) + (g2 #u) + (g #u)
))

in
(f 0 #u #u)

3. First-class Modules (20 pts)

The simple module values we developed a semantics for in class had more expressive power than those in many
programming languages in that they were first-class values. In fact, they look suspiciously close to objects in an
object-oriented language. In this problem we will explore the correspondence further.

Suppose we extend call-by-value uF with the following expression forms similar to those we saw in the simpler
module mechanism presented in class:

e ::= . . . | module m (fields X ; methods Y) | e.x | extend e1 by e2

f ::= fn x e
X ::= x1 = e1, . . . , xn = en

Y ::= y1 = f1, . . . , yn = fn

In this new language, uFm, a module expression introduces a name for the module value itself, m. This identifier
is in scope in the remainder of the module expression and may be used in the method expressions f i (but not the
field definitions ei). None of the other xi, yi are in scope in the ei, fi, but you can get to them indirectly in the f i’s
via m. The field bindings are “by-value”, in that the e i are evaluated when the module expression is encountered,
not when the fields are selected. The methods are constrained to be functions and so are automatically values.

The expression e.x (or e.y) selects the field value named x (or method named y) that is exported by the module
value that e evaluates to.

The expression extend e1 by e2 produces a new module values from two existing ones that are obtained by
evaluating e1 and e2. The new module value defines an identifier if it is defined in either e 1 or e2, and the
definitions in e2 take precedence.

Using these features, we can write code that is at least superficially object-oriented (assuming the usual desug-
aring for let):

1

let make point = rec fn coords
(module p (fields x = first coords,

y = rest coords;
methods lengthsq = fn u p.x*p.x + p.y*p.y,

minus = fn p2 make point <p.x - p2.x, p.y - p2.y>
)) in

let p1 = make point <1,3> in
let p2 = make point <2,4> in
p1.minus(p2).lengthsq #u

The result of this program is 5.

In this problem we will extend the semantics of uF to describe uFm. Unlike in the module semantics given in
class, we will consider modules to be environment extenders: that is, members of the domain Env → Env that
extend an existing environment with a set of possibly new bindings.

Questions

(a) (3 pts) Make all changes to the domain equations of uF necessary to support these language features.

(b) (3 pts) The module expression only permits the module name to occur in method definitions. Why is this
limitation important for the ability to define a semantics for this language?

(c) (10 pts) Define the semantic function C for the new uFm expression forms.

(d) (4 pts) Read Section 15.12.4.8 of the Java Language Specification, Second Edition [Gosling, Joy, Steele,
and Bracha 2000], available online at
http://java.sun.com/docs/books/jls/

Informally, in a paragraph, use this example to illustrate how method overriding in Java extends differs
from uFm’s extend operator. If necessary, give references to other parts of the Java specification that
explain how this part of Java works.
(Don’t use the first edition, which is available from the same page).

4. Deterministic parallelism (25 pts)

Concurrency is one language feature for which we have so far avoided giving a denotational semantics. One
reason is that concurrent execution is virtually always nondeterministic, and models for nondeterminism involve
powerdomains or equivalently complex constructions. However, we can write a semantics for deterministic
parallelism using continuation-passing style. We extend the uF ! language with an expression form to spawn a
new thread of execution:

e ::= . . . | spawn e

Informally, this expression generates a new thread of execution that evaluates the expression e. The spawn
expression itself returns immediately with the value #u, and the fact that e is evaluated can be observed only by
its side effects.

As an example, given inputs m and n, the following program spawns a single thread to perform a calculation,
proceeds until the answer is needed, then waits until the answer becomes available.

(fn n (fn m
let FLAG = ref #f in
let Y = ref 0 in
let u1 = spawn (let u1 = Y := n*n + m*m in FLAG := #t) in
let x = n*m + m*n in
let wait = rec w (fn x (if !FLAG then x else w x)) in
let u2 = wait #u in
!Y - x

))

2

This program, applied to arguments 3 and 4, gives 3 2 + 42 − 2 · 3 · 4 = 25 − 24 = 1.

Because execution is deterministic, we must model the action of the thread scheduler. We assume that a suitable
domain, Scheduler, exists to capture the state of the scheduler. This state consists of a set of threads that are
waiting to run. A waiting thread will be represented by a member of the domain Resumption:

Resumption = Store → Scheduler → Answer

We are not particularly interested in exactly how the scheduler does its work, so we will assume the existence
of a pair of continuous functions:

push-thread ∈ Scheduler → Resumption → Scheduler
pop-thread ∈ Scheduler → (Resumption × Scheduler)

such that push-thread adds a resumption to the pool of waiting threads in the scheduler, and pop-thread selects
(somehow) one of the waiting threads and returns both it and the updated scheduler state with that resumption
removed. We also assume the existence of an empty, “initial” scheduler S 0 ∈ Scheduler, from which popping
is forbidden.

If a thread never gets a chance to execute, it is starved. Fairness means that no thread is starved. Assuming that
pop-thread is fair (for example, if the scheduler is a FIFO queue), the only way a thread can starve is if some
thread gets to run forever. We want to make sure that enough preemption occurs that threads cannot starve other
threads. One way to do this is to preempt each thread after each execution step, and that is what this language
should do.

Continuations must also be extended to take the scheduler as an argument:

Cont = Value → Resumption

In this language, there is one main thread. It may spawn child threads, which might themselves have children,
etc. All threads other than the main thread are children. When a child thread executes to a value, that value
is discarded and the thread terminates. When the main thread executes to a value, that value is returned as the
result of the program and all threads are terminated. Note that it is therefore possible to have a program that
contains nonterminating threads but itself does terminate.

You should use the following two continuations to model this behavior in your semantics:

kmain = λv ∈ Value.λσ ∈ Store.λS ∈ Scheduler.
�〈Value(v), σ〉�

kchild = λv ∈ Value.λσ ∈ Store.λS ∈ Scheduler.
let 〈R, S′〉 = pop-thread S in
R σ S′

Questions

(a) (5 pts) What are the possible results of executing the following programs under different scheduling or
preemption implementations?
Program 1

(let f1 = (fn n (fn m
let FLAG = ref #f in
let Y = ref 0 in
let u1 = spawn (let u = Y := n*n + m*m in FLAG := #t) in
let u2 = spawn (let u = Y := n + n*m + m in FLAG := #t) in
let x = n*m + m*n in
let wait = rec wait’ (fn z (if !FLAG then z else wait’ z)) in
let u3 = wait #u in
!Y - x)) in

f1 3 4)

3

Program 2

(let testwait = (fn test (rec wait’
(fn x (if (test #u) then x else wait’ x)))) in

(let f2 = (fn n (fn m
let FLAG1 = ref #f in
let FLAG2 := ref #f in
let Y := ref 0 in
let u1 = spawn (let u = Y := n*n in

FLAG1 := #t) in
let u2 = spawn (let u = Y := !Y + m*m in

let u = testwait (fn u (!FLAG1)) #u in
let u = FLAG2 := #t in
let u = FLAG1 := #f in
FLAG2 := #f) in

let u = testwait (fn u (!FLAG2)) #u in
!Y)) in

f2 3 4))

(b) (10 pts) Finish the necessary modifications to the uF ! domain equations.

(c) (10 pts) Define the semantic function C for the extended language. Given a closed expression e, its de-
notation should be C[[e]]ρ0kmainσ0S0, where ρ0 and σ0 are the initial environment and store, kmain is the
continuation for the main thread, and S0 is the provided initial, empty scheduler. (Hint: Define helper
function(s) to do any repetitive operations)

4

