
CS611 Homework 3 DUE: October 11, 2000

What to turn in

Turn in the written parts of the assignment during class on the due date. For the programming part, you
should mail your version of the file translate.sml to jcheney@cs.cornell.edu by 5pm on that day.

1. Continuity

(a) Consider the function

minall : (ω⊥ → ω⊥) → ω⊥ = λf : ω⊥ → ω⊥ . min
y∈ω

f(y)

In this definition, ω denotes the whole numbers (0, 1, 2, . . .), and the function min gives the
smallest number in all of the f(y), or ⊥ if f(y) = ⊥ for some integer y. Show that this function
is monotonic but not continuous.

(b) Winskel, 8.16

2. Uniformity of fix

The Fixed Point Theorem established that fix gives the least fixed-point of a continuous function on a
pointed cpo. It is natural to ask whether or not other fixed-points could be used in defining denotational
semantics. In one sense, we require the least defined function satisfying a given recursive equation;
other fixed-points defined at more values may correspond to non-computable denotations. However,
in another sense, taking the least fixed-point yields a canonical solution. A fixed-point operator F is
a collection of continuous functions FD : [D → D] → D such that, for each cpo D and continuous
function f : D → D, FD(f) = f(FD(f)). In this problem, you will show that fix is the unique uniform
fixed-point operator over pointed cpos.

(a) Let D and E be pointed cpos. Suppose f : D → D and g : E → E are continuous functions and
h : D → E is a strict continuous function (i.e., h(⊥D) = ⊥E). Finally, suppose h ◦ f = g ◦ h.
Show that for all n ∈ ω, h(fn(x)) = gn(h(x)).

(b) A fixed-point operator is uniform if for all continuous functions f : D → D and g : E → E and
strict continuous function h : D → E such that h ◦ f = g ◦ h we have h(FD(f)) = FE(g). Prove
that fix is uniform over pointed cpos.

(c) Prove that fix is the unique uniform fixed-point operator over pointed cpos. (Hint: If D is a
pointed cpo and f : D → D is a continuous function, then consider D′ = {x | x � fix(f)} and the
restriction f ′ of f to D′.)

3. Parameter Passing and Scoping

(a) Give a single REC+ program that has a different meaning in each of call-by-name, call-by-value,
and call-by-denotation. To check your answer, explicitly sketch the reduction of each denotation
to normal form (you need not show every reduction along the way).

(b) Lew Scannon has the idea that REC+ programs can be protected from compilers and interpreters
that use an parameter-passing style by having the program test itself to determine which style is
being used, and then branching to an appropriate subprogram. Why won’t Lew’s idea work?

4. Implementation

In this problem you will translate a lazy Scheme-like language with some interesting features into a
simple variant of the untyped lambda calculus.

The implementation files for this question are found in the file lambda.tar.gz, which is available
from the course web page. The archive contains the implementation for an interpreter for the source
language of your translation (which is described below). You can interact with the interpreter via four
functions defined in top.sml. They are:

1

load : string -> LambdaAst.expr Takes the name of a file containing a lambda expression and
returns the ML value for the program

run : LambdaAst.expr -> LambdaAst.expr Evaluates a lambda expression

trans : LambdaAst.expr -> LambdaAst.expr An interface to your translation described below

run2 : LambdaAst.expr -> LambdaAst.expr Runs translated expressions

The syntax for the full language is given by:

op ::= + | * | - | zero? | fst | snd
| hd | tl | nil? | cons | #t | #f | if | and | or

e ::= x | n | op | (fn (x1 . . . xn) e) | (e1 . . . en) | 〈e1, e2〉 | [e1 . . . en]
| (left e) | (right e) | (case e (v1 e1) (v2 e2))
| (letrec ((v1 e1) . . . (vn en)) e)

In this syntax definition, x stands for variable identifiers, n ranges over the integers and A1 . . . An

stands for zero or more occurrences of syntactic objects of the form A. Lambda abstractions with
any number of arguments x1, . . . , xn are written (fn (x1 . . . xn) e). Both user-defined functions and
primitive operations are applied to their arguments using prefix notation, just as in the simple lambda
calculus. Thus (+ 3 4) evaluates to 7, and ((fn (x) (x)) 37) evaluates to 37

Arithmetic operators first evaluate their two arguments and then perform the operation. Subtraction
(−) expects exactly two integers, while + and ∗ work on any number of arguments. However, when
+ and ∗ are used as expressions other than in the operator position in an application expression, they
produce functions that expect exactly two arguments. Thus, the expression (((fn (x) +) 0) 1 2 3)
does not have the same meaning as (+ 1 2 3); it results in the application of a two argument function
to three arguments (1, 2, and 3), which is an error.

Pairs are enclosed in angle brackets, so 〈e1,e2〉 is a list containing three values. Pairs are lazy, so 〈(+ 3
4),5〉 does not immediately evaluate to 〈7,5〉. The fst and snd operators return the first and second
components of a pair, respectively.

The left and right expressions, together with the case expression, are generalizations of boolean
true/false and if. Both left and right expect one argument. The expressions (left e) and
(right e) evaluate to themselves; the argument e is not evaluated at this point.

The (case e (v1 e1) (v2 e2)) expression evaluates e. If it is of the form (left e′), then e′ is
substituted for v1 in e1 and the result is evaluated. Similarly, if e evaluates to (right e′) then e′ is
substituted for v2 in e2. It is an error if e evaluates to anything else.

The boolean operators if, and, or, #t, #f are just “syntactic sugar” for special forms of case expres-
sions. Each of these can be expressed as a combination of left, right, and case expressions. To see
how, look at ast.sml. The list operations are also expressed in terms of pairs and cases, according to
the (recursive) definition “list = either nil or cons of expression and list”. These definitions are also in
ast.sml.

You are free to use these syntactic sugar definitions in your translation as shortcuts, but keep in mind
that they need to be translated too. For example, if you felt like representing some expression as
nil, you could use the definition LambdaAst.astNil, but since this definition might contain additional
constructs to be translated (such as left, right, and case), you would need to translate astNil also.

The operator zero? expects one argument and returns #t if it is an integer expression that evaluates
to 0 and #f if it is any other value.

The letrec expression binds variables to (potentially) mutually recursive expressions ei that may be
used in the body e. For example, the following function determines (slowly) whether an integer is even
or odd.

2

(fn (z)
(letrec ((even (fn (x) (if (zero? x) #t (odd (- x 1)))))

(odd (fn (x) (if (zero? x) #f (even (- x 1))))))
(even z)))

After compiling the interpreter using CM.make() you should be able to load and run lambda programs
using the commands described above. For this assignment, you will need to modify only the file
translate.sml.

As described in class, it is possible to encode many concepts in the primitive lambda calculus that
contains only variables, function application, and functions of a single variable. For this problem you
will perform a translation of many primitives into the simple language. Since some of the constructs
of the full language are just “abbreviations” for more complicated core expressions, you only need to
translate the core expressions. You should be happy about this, since there are fewer cases for you to
implement (and debug).

The core source language is:

op ::= + | * | - | zero? | fst | snd
e ::= x | n | op | (fn (x1 . . . xn) e) | (e1 . . . en) | 〈e1, e2〉

| (left e) | (right e) | (case e (v1 e1) (v2 e2))
| (letrec ((v1 e1) . . . (vn en)) e)

This is just the full language without list and boolean operations.

The syntax for the simple language is given by:

op ::== + | − | ∗
e ::== x | n | zero? | (fn (x) e) | (e1e2) | (op e1 e2)

where + and ∗ now operate on exactly two integers, functions take exactly one argument, and there
is no built-in support for pairs, cases, or recursive definitions. The binary operators +, ∗, and − may
not be used as expressions. Integers are supported as a built-in type in the simple language, although
you could imagine translating them to Church numerals as shown in class.

You should write a translator from the core language to the simple language. A few cases for the
translator we wrote are filled in in the source files for this problem, but you are free to do this
translation any way you wish (as long as it requires modifying only translate.sml). To help you
to determine whether your translation is correct, there is a modified interpreter, which you can call
by run2, to evaluate a lambda term in the simple language. The modified interpreter gives errors for
programs that do not conform to the target language specification given above.

There are many possible ways to do the translation, but one way we suggest is to do it in two phases.
In the first phase, write a translator that handles everything but letrec, leaving letrec alone. You
can test this translator using the original run interpreter. Then translate letrec expressions into other
language constructs, and translate the result again. It’s much easier (and less error-prone) to express
letrec in terms of the other language constructs than to do the translation directly.

3

