
CS611 Homework 2 DUE: 09/25/00

What to turn in

Turn in the assignment during class on the due date.

1. Equivalence of semantics (15 pts.)

Winskel, exercise 4.10. Do only the “only if” direction: prove that any complete execution in the
small-step semantics can be computed in the large-step semantics. Show only the cases of the while
statement and the sequence of two commands, c1; c2. Note: only the only-if direction of the sequence
lemma needs to be proved.

2. Lambda calculus (30 pts.)

(a) Free variables
Identify the free and bound variables in each of the following expressions:

i. (λx (x y))
ii. (λ(z x) (x y z))
iii. (z (λy ((λz (x y)) z)))

(b) Encodings

i. Show a sequence of β- and/or η-reductions applied to (INC 1), resulting in the standard
representation of 2 as a Church numeral.

ii. Show how to write a lambda term named EMPTY? that determines whether a list, (using the
implementation given in class), is empty, and returns either TRUE or FALSE, accordingly.
You will need to choose a lambda term to represent the empty list, NIL.

iii. Show how to write MULT, EXPT, and DEC operations that work on Church numerals. Hint
for DEC: first construct a function that maps a pair 〈l, r〉 to a pair 〈l + 1, l〉.

(c) The S, K, I Combinators

Consider the following definitions:

S ≡ (λ(x y z) ((x z) (y z)))
K ≡ (λ(x y) x)
I ≡ (λx x)

These are the S, K, and I combinators, which Curry experimented with to eliminate the need for
variables. A combinator is just another name for a closed term. These three have the remarkable
property that any lambda calculus expression containing no free identifiers (a closed expression)
can be expressed using only applications operating on these three combinators, with no explicit
variables or abstraction terms. This property also means that the lambda calculus can be universal
with only three distinct identifier names, since no combinator uses more than three identifiers.

i. Reduce the following expressions to normal form:
• (K I)
• (S K)

ii. Show that the I combinator is superfluous: the S and K combinators can be used to construct
an expression with the same normal form.

iii. Now, we will construct a translation from lambda expressions to expressions containing only
applications of the S and K combinators. This translation will be defined in terms of two
functions: C[[e]], which converts an expression e into this form, and a function A[[x, e]], which
abstracts the variable x from the expression e. removing all uses of x within e.

1



The idea is that A[[x, e]] = (λ x e), in the sense that the two expressions have the same effect
when applied to any argument (they are extensionally equal). Using the function A, the
function C can be defined simply.

C[[x]] ≡ x

C[[e0 e1]] ≡ (C[[e0]] C[[e1]])
C[[λ x e]] ≡ A[[x, C[[e]]]]

Because A is only applied to expressions produced by C, it needs to be defined only for
expressions that are identifiers and applications. For example, consider A[[x, x′]] where x′ �= x.
We require (A[[x, x′]]e) = (λ x x′)e for any e, so we obtain the right effect with the following
definition:

A[[x, x′]] ≡ (K x′) (x �= x′)

Define the remainder of the translation to the S, K, and I combinators. Does this translation
result in the most compact equivalent expression using the combinators?

(d) Alpha-renaming

An equivalence relation has the properties of reflexivity (a � a), symmetry (a � b ⇐⇒ b � a)
and transitivity (a � b ∧ b � c ⇒ a � c). Show that alpha-equivalence is an equivalence relation
on lambda calculus expressions.

3. Fixed Points (10 pts.)

Consider the definition

F = λf ∈ Z⊥ → Z⊥ . λx ∈ Z⊥.if (x = 1) then 1 else f(x − 1) + 2x − 1

We can define the squaring function as

SQUARE
def
= fix(F ) =

⊔

n∈ω

Fn(⊥)

(a) Expand F2(⊥) and F3(⊥) into normal form for some reasonable definition of normal form.

(b) For what argument values x do these two functions compute x2 ?

(c) Prove inductively the set of argument values x for which the function Fn(⊥) computes x2 correctly.

2


