
CS611 Homework 1 DUE: 09/11/00

What to turn in

Turn in the written parts of the assignment during class on the due date. For the programming part, you
should mail your version of the file interpretation.sml to fluet@cs.cornell.edu by 5pm on that day.

1. Term Equivalence

Consider a version of IMP in which we add the construct do c until b. We have some choice about
how to extend the (large-step) semantics. One option is to notice that this statement is equivalent to
the statement c; while ¬b do c, and write an corresponding inference rule:

〈c; while ¬b do c, σ〉 ⇓ σ′

〈do c until b, σ〉 ⇓ σ′

(a) Another option is to express the large-step semantics of do . . .until directly, without building on
while. Give two inference rules that do this.

(b) Prove that in the extended language based on the large-step semantics of part 1(a), the command
do c until b and the command c; while ¬b do c are equivalent in all states and for all commands
c and boolean expressions b. Hint: expand their proof trees.

2. Structural induction

(a) Exercise 3.5, Winskel. You are asked to show that the large-step evaluation relation is actually a
function, and that it is defined on its entire domain (that is, total).

(b) Exercise 2.4, Winskel.

(c) Because of the result in part 2(a), the semantics you have defined for part 2(b) don’t actually
differ from the left-to-right evaluation semantics for disjunction. Informally describe a language
construct that you could add to IMP that would make the two semantics differ.

(d) Use structural induction to show that the two semantics are identical in standard IMP. You may
assume that the result of part 2(a) holds for both semantics even though you have shown it holds
only for the left-to-right evaluation order.

3. Adding break

IMP is lacking many features of a real programming language, most notably functions and data struc-
tures, which we will study later. In this problem you will add a mechanism like C’s break statement
that allows a program to terminate while loops early. While this is a seemingly minor change to the
language, we shall see that it radically alters the semantics of IMP.

As an example, the program in Figure 1 (also found in testB1.imp) should halt with the value 8 in
location ANSWER:

This example brings out several points when adding break to IMP. First, if the break occurs in
a sequence of commands, the remainder of the sequence (in this case ANSWER := ANSWER + 10) is
not evaluated. Second, there must be a way to keep track of where the program will continue after
evaluating a break command. Since while loops may be nested, these break continuations form a
stack.

A continuation can be thought of as “the rest of the evaluation of the program”, and we shall study
them in more depth later. For now, we can think of continuations as “the next command to be
executed”, which, in general, will be a sequence representing all of the commands remaining in the
program. As we observed above, introducing break requires that we have the ability to both discard
the continuation of a command in a sequence and save a continuation on a stack so we know where to
pick up execution after evaluating break. This suggests that we modify IMP’s program configurations

1

while (true) {
while (true) {
ANSWER := ANSWER + 1;
if (ANSWER = 4) then {

break;
ANSWER := ANSWER + 10

} else {
skip

}
};
ANSWER := ANSWER * 2;
break

}

Figure 1: Sample program using break

aexpc ::= n | Loc | aexpc + aexpc | aexpc ∗ aexpc | aexpc − aexpc | (aexpc)

bexpc ::= true | false | aexpc = aexpc | aexpc <= aexpc | not bexpc

| bexpc or bexpc | bexpc and bexpc | (bexpc)

comc ::= skip | break | Loc := aexpc | if (bexpc) then { comc } else { comc }
| while (bexpc) do { comc } | comc ; comc

Figure 2: IMP concrete syntax

to be the following: 〈ccur, cnext, ρ, σ〉, where ccur is the command currently being executed, cnext is
the continuation of ccur, ρ is a stack of commands, written cn :: cn−1 :: . . . :: c1 :: [], each ci representing
the continuation of any break commands in the body of a while loop with nesting depth i, and σ is
an IMP state as usual.

There are a few subtle points to address. The first question is: What happens when a break com-
mand is executed outside of any while -body?, that is when ccur = break and ρ = []. This can be
considered an ill-formed program which should cause an error to occur—our interpreter will model this
by raising the exception BadBreak defined in interpretation.sml. The second question is: What is
the continuation of a single-command program such as X := 3? Since such an IMP program should
halt after executing the command, we could add a special Halt continuation to the interpreter, but to
make things easier, we will adopt the convention that if the skip command appears as cnext then the
program is to terminate after evaluating ccur. (This makes the interpreter slightly simpler to write.)

With these observations in hand, we can now specify the operational semantics of IMP+break. The
new judgements will be of the form 〈ccur, cnext, ρ, σ〉 → σ′. As an example, consider the following
inference rule specifying the behavior of the assignment command:

〈a, σ〉 → n 〈cnext, skip, ρ, σ[n/X]〉 → σ′

〈X := a, cnext, ρ, σ〉 → σ′

To evaluate the command X := a followed by cnext with break continuations ρ and state σ, we
first evaluate the arithmetic expression a in state σ to obtain the number n. Next we evaluate the
continuation cnext with skip as its continuation (indicating the program should then halt), the same
ρ, and a new state obtained from σ by updating X to be n.

Here is the axiom for specifying when a program halts:

2

〈skip, skip, [], σ〉 → σ

Here is the rule for evaluating a skip command as part of a sequence of other commands:

〈cnext, skip, ρ, σ〉 → σ′

〈skip, cnext, ρ, σ〉 → σ′ (cnext �= skip)

(a) Operational Semantics

Define the full set of operational semantics for IMP+break using the rules above as guidelines.
You will need to define the proper behavior for the interaction of break and while statements.
In particular, break should discard cnext and while should save its continuation on the top of ρ.
Be careful!

(b) Implementation

The lexer and parser have already been modified to support the break command. Implement the
interpreter for IMP+break as the function interpretBreak : configBreak -〉 state found
in the source file interpretation.sml. The stack of continuations, ρ, is implemented by an
ImpAst.com list. This should be straightforward, once you’ve decided what the operational
semantics should be. Conversely, if you can implement the interpreter correctly, you should be able
to write down its operational semantics. The only file you need to modify is interpretation.sml.
Note that on programs not containing the break command, test and testB should agree. Feel
free to post interesting test cases to the newsgroup.

Getting started

For problem 3, you should download the file imp.tar.gz from the CS611 web page for Homework 1
and extract the contents to a working directory.

These files contain the source code to a simple IMP interpreter (the file interpretation.sml) as
discussed in class. To make it easier for you to debug and test your code, we have written a lexer and
parser (the imp.lex and imp.grm files). We’ve also included a pretty-printer for the abstract syntax
(pprint.sml). The file top.sml contains two functions, test and testB, both of type string -〉 int
that take the name of a file containing IMP code, pretty-print it, interpret the program, and print out
the result contained in the ANSWER location. The testB function will be used to run IMP programs
extended with a break construct as described below. There are also a couple example IMP programs
(*.imp).

Feel free to browse through the source code provided, but for the purposes of this assignment, the only
file you have to modify is interpretation.sml. The other code makes use of ML’s module system,
but you shouldn’t need to know how it works to do this assignment.

To compile your IMP interpreter, first edit the file sources.cm to set the appropriate path to the
ML-Yacc libraries. (For the appropriate path, see the comments in sources.cm.) Next start SML/NJ
in the directory with the source code and type CM.make() at the prompt. The first time you do this,
all of the files will be compiled and cached on disk. From then on, you can recompile changes you’ve
made by doing CM.make() again—only those files that have changed will be recompiled. CM.make()
also adds the toplevel function definitions to the environment. At this point you should be able to run
the file test1.imp by typing test test1.imp at the prompt.

The concrete syntax of IMP is shown in Figure 1. It is essentially the abstract syntax discussed in class
augmented with parenthesis and C-like syntax for if and while commands. Locations are denoted by
strings containing only upper or lower case alphabetic characters. Negative numbers are prefixed with
~ as in ML. Keywords are all in lower case. The arithmetic operators have the usual precedence and
associativity, and you can put parenthesis in to group them. Note that ; acts as a command separator
not a terminator, so you will get parse errors if you put ; at the end of a sequence.

3

