Performance Measures for Machine Learning

I

Performance Measures

- Accuracy
- Weighted (Cost-Sensitive) Accuracy
- Lift
- ROC
 - ROC Area
- · Precision/Recall
 - F
 - Break Even Point
- Similarity of Various Performance Metrics via MDS (Multi-Dimensional Scaling)

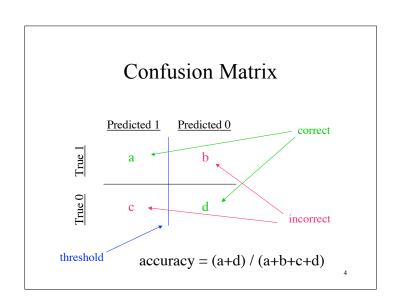
2

Accuracy

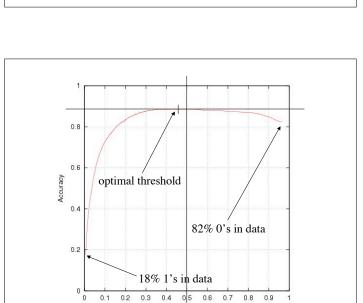
- Target: 0/1, -1/+1, True/False, ...
- Prediction = f(inputs) = f(x): 0/1 or Real
- Threshold: f(x) > thresh => 1, else => 0
- If threshold(f(x)) and targets both 0/1:

accuracy =
$$\frac{\sum_{i=1,...N} (1 - |target_i - threshold(f(\vec{x}_i))|_{ABS})}{N}$$

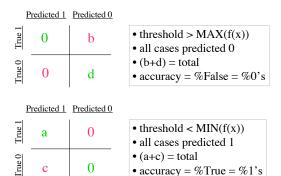
- #right / #total
- p("correct"): p(threshold(f(x)) = target)



	Predicted 1	Predicted 0		Predicted 1	Predicted 0
True 1	true positive	false negative	True 1	TP	FN
True 0	false positive	true negative	True 0	FP	TN
	Predicted 1	Predicted 0		Predicted 1	Predicted 0
True 1	hits	misses	True 1	P(pr1ltr1)	P(pr0ltr1)
True 0	false alarms	correct rejections	True 0	P(pr1ltr0)	P(pr0ltr0)



Prediction Threshold

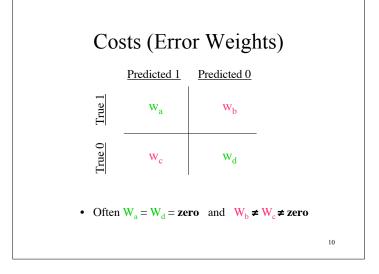


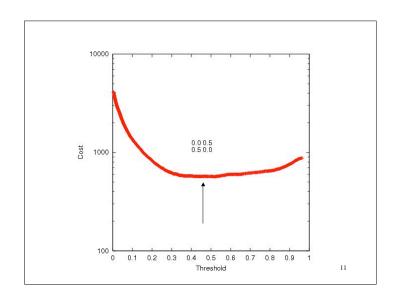
Problems with Accuracy

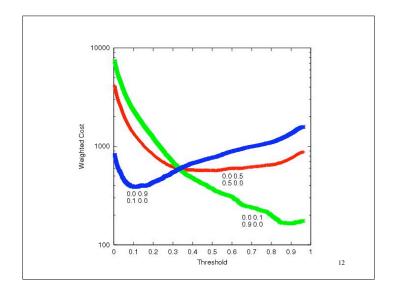
- Assumes equal cost for both kinds of errors
 - cost(b-type-error) = cost (c-type-error)
- is 99% accuracy good?
 - can be excellent, good, mediocre, poor, terrible
 - depends on problem
- is 10% accuracy bad?
 - information retrieval
- BaseRate = accuracy of predicting predominant class (on most problems obtaining BaseRate accuracy is easy)

Percent Reduction in Error

- 80% accuracy = 20% error
- suppose learning increases accuracy from 80% to 90%
- error reduced from 20% to 10%
- 50% reduction in error
- 99.90% to 99.99% = 90% reduction in error
- 50% to 75% = 50% reduction in error
- can be applied to many other measures







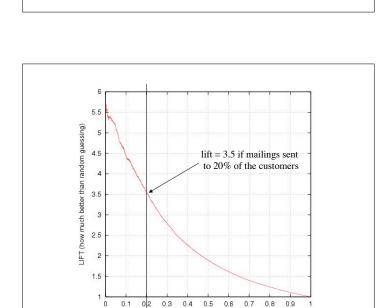
Lift

- not interested in accuracy on entire dataset
- want accurate predictions for 5%, 10%, or 20% of dataset
- don't care about remaining 95%, 90%, 80%, resp.
- typical application: marketing

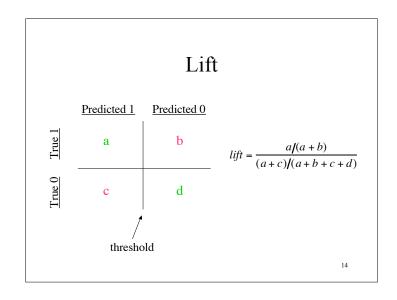
$$lift(threshold) = \frac{\%positives > threshold}{\%dataset > threshold}$$

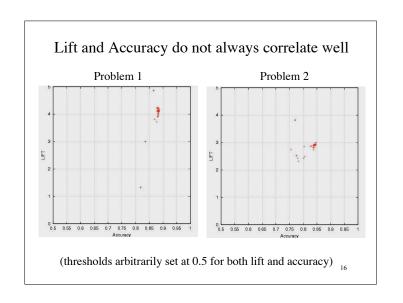
• how much better than random prediction on the fraction of the dataset predicted true (f(x) > threshold)

13



Fraction of Data Set Predicted True





ROC Plot and ROC Area

- Receiver Operator Characteristic
- Developed in WWII to statistically model false positive and false negative detections of radar operators
- Better statistical foundations than most other measures
- Standard measure in medicine and biology
- Becoming more popular in ML

17

ROC Area = 0.9049 ROC Area = 0.9049 diagonal line is random prediction 1. Specificity = False Positive Rate = P(pred true|false)

ROC Plot

- · Sweep threshold and plot
 - TPR vs. FPR
 - Sensitivity vs. 1-Specificity
 - P(true|true) vs. P(true|false)
- Sensitivity = a/(a+b) = LIFT numerator = Recall (see later)
- 1 Specificity = 1 d/(c+d)

18

Properties of ROC

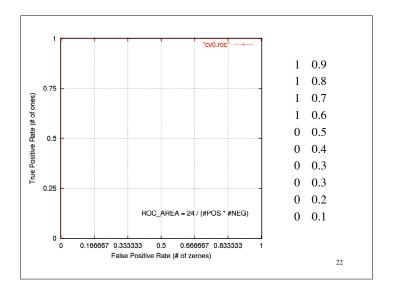
- ROC Area:
 - 1.0: perfect prediction
 - 0.9: excellent prediction
 - 0.8: good prediction
 - 0.7: mediocre prediction
 - 0.6: poor prediction
 - 0.5: random prediction
 - <0.5: something wrong!

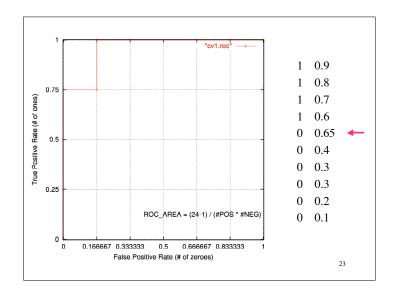
Wilcoxon-Mann-Whitney

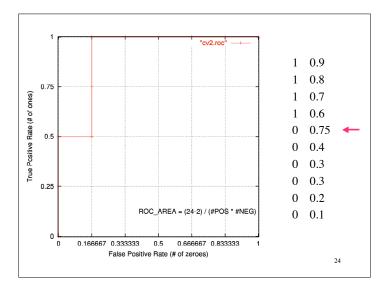
$$ROCA = 1 - \frac{\#_pairwise_inversions}{\#POS * \#NEG}$$

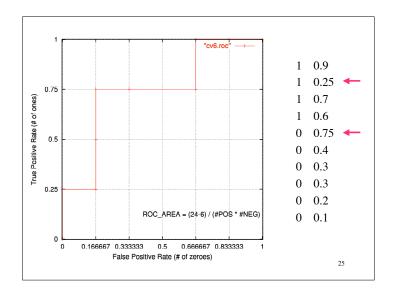
where

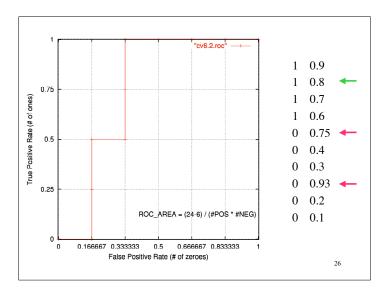
$$\sum_{i,j} I[\left(P(x_i) > P(x_j)\right) \& \left(T(x_i) < T(x_j)\right)]$$

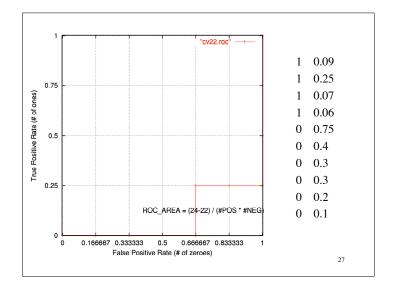


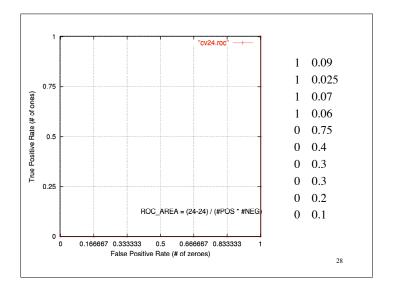








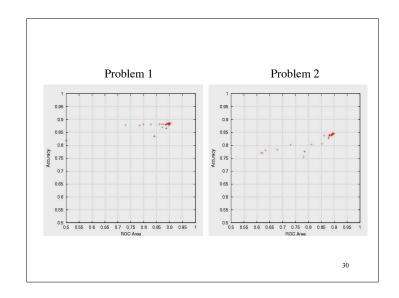




Properties of ROC

- Slope is non-increasing
- Each point on ROC represents different tradeoff (cost ratio) between false positives and false negatives
- Slope of line tangent to curve defines the cost ratio
- ROC Area represents performance averaged over all possible cost ratios
- If two ROC curves do not intersect, one method dominates the other
- If two ROC curves intersect, one method is better for some cost ratios, and other method is better for other cost ratios

29



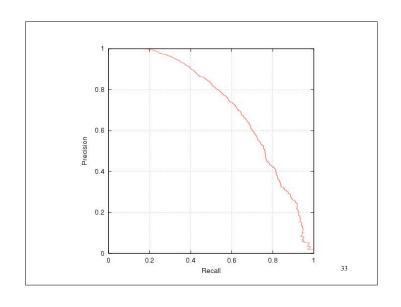
Precision and Recall

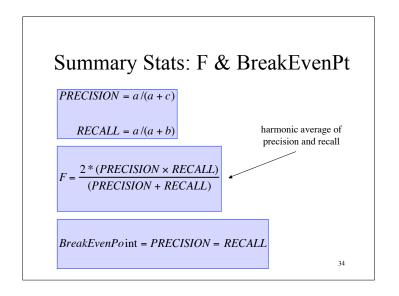
- typically used in document retrieval
- Precision:
 - how many of the returned documents are correct
 - precision(threshold)
- Recall:
 - how many of the positives does the model return
 - recall(threshold)
- Precision/Recall Curve: sweep thresholds

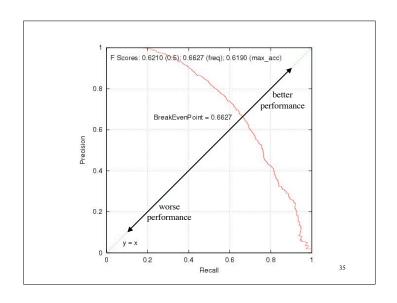
Precision/Recall

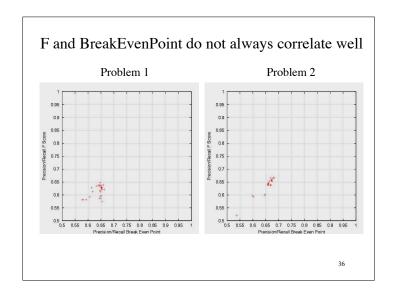
Predicted 1 Predicted 0

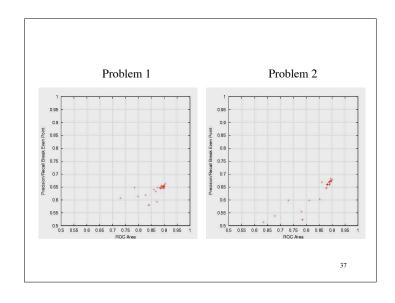
a b PRECISION = a/(a+c)RECALL = a/(a+b)threshold

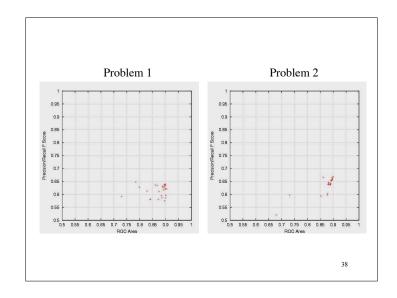












Many Other Metrics

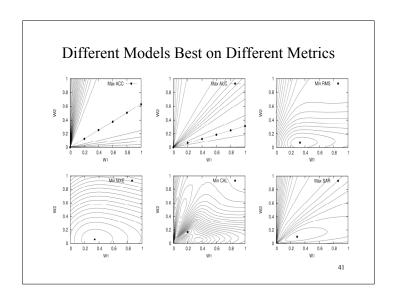
- Mitre F-Score
- · Kappa score
- Balanced Accuracy
- RMSE (squared error)
- Log-loss (cross entropy)
- Calibration
 - reliability diagrams and summary scores

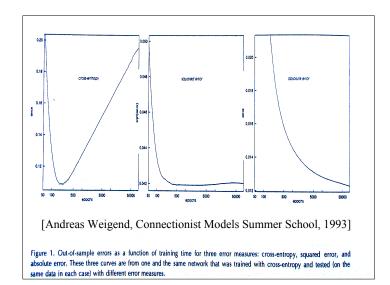
• ...

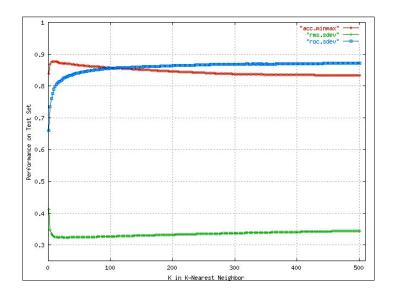
39

Summary

- the measure you optimize to makes a difference
- the measure you report makes a difference
- use measure appropriate for problem/community
- accuracy often is not sufficient/appropriate
- ROC is gaining popularity in the ML community
- only a few of these (e.g. accuracy) generalize easily to >2 classes







Really does matter what you optimize!

