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Supervised Learning Supervised Learning

Decision trees o F(x): true function (usually not known)
Artificial neural nets e D: training sample drawn from F(x)
K-nearest neighbor 57,M,195,0,125

78.M,160.1,1
Support vectors T 180.0.115.95.4
Linear regression
Logistic regression

74.M.250,1,13
77.F,140.0,




Supervised Learning

o F(x): true function (usually not known)

e D: training sample drawn from F(x)

71.M.,160,1,130,105,38.20,1,0,0.0.0,0,0.0,0.,0.1,0,0.0.0.0,0.0.0,0.0
o Goal: BE<(F(x)-G(x))>> is small (near zero) for
future samples drawn from F(x)

Clustering
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Supervised [Learning

Supervised Learning

Well Defined Goal:

Learn G(x) that is a good approximation

to F(x) from training sample D
Know How to Measure Error:

Accuracy, RMSE, ROC, Cross Entropy, ...

Clustering

Unsupervised Learning




Supervised Learning

Train Set:

57,M,1

Test Set:

71.M.,160,1,130,105. 1.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0

Supervised Learning

Train Set:

0,1,0,0,0,1,0,0,0,0,0.0,1,1,0,0,0,0,0,0,0,0

0,0,0,1,0.1,1,1,0,0,0,0,0,0.0,0,0.0.0,0.0

,0,1,0,0,0.0,1.,0,0,0.0,0,0,0,0.0.,0,0.0

0,0,0.0.0.0.0. 0.0.0.0.0.0

, .0,0,1,0.0.0.0,1.0.0.0,1,0.0.0.0

84.F.210.1, 05.39.24, 0.0.0,1.0.0.0.0.0.0.0.0.0.0.0.0.0
89.F,135,0,120,95,36,28.0.

40.M.,20: 3, 0.,0,0.0.0.0.0.0.0.0.0,0.0.0.0.0
74.M.,250,1,130,100,38.26.1,1.0.0.0.1,1.0.0.0,0.0.0.0.0.0.0.0.0.0.0
77.F,140.,0,125,100.40.30.1.1,0.0.0.0,0.0.0.0.1.0.0.0.0.0.0.0.0.0.1.1

Teot Sate

71.M,160.1.130°10%

Supervised Learning

Train Set:
57,M,

0,1,0,0.0,0,0.0.
1,0.0,0,0,0,0.0.0.0.0.0.0.0.0.0.0.0

Test Set:

71.M.160,1,130,105.38.20.1,0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.

Supervised Learning

Data Set:

57,M,195.0,125.95.39.25.0.1.0,0.0,1.0,0.0,0.0.0,1,1,0.0.0,0.0.0.0.0
78.M,160,1,130,100,37,40,1,0,0,0,1,0.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0.0

84,F.210,1,13
89.F.1

40.M.205.0.115.90.37.18.0.0. .0,0,0,0.0.0.0,0.0.0.0.0.0
74,M.250,1,130,100,38.26.1,1.0,0,0,1,1.,0,0,0.0.0.0,0,0.0.0.0.0.0.0
77.F,140.




Supervised vs. Unsupervised Learning

y=F(x): true function Generator: true model
D: labeled training set D: unlabeled data sample
D: {x,y:} D: {x;}

y=G(x): model trained to Learn

predict labels D

Goal: Goal:
E<(F(x)-G(x))*>>=0

Well defined criteria: Well defined criteria:
Accuracy, RMSE, ...

Goals and Performance Criteria?

Statistical Summaries
Generators

Density Estimation
Patterns/Rules
Associations
Clusters/Groups
Exceptions/Outliers

Changes in Patterns Over Time or Location

What to Learn/Discover?

Statistical Summaries

Generators

Density Estimation

Patterns/Rules

Associations

Clusters/Groups

Exceptions/Outliers

Changes in Patterns Over Time or Location

Clustering




Clustering

e Given:

— Data Set D (training set)

— Similarity/distance metric/information
 Find:

— Partitioning of data

— Groups of similar/close items

Types of Clustering

« Partitioning

— K-means clustering

— K-medoids clustering

— EM (expectation maximization) clustering
» Hierarchical

— Divisive clustering (top down)

— Agglomerative clustering (bottom up)
» Density-Based Methods

— Regions of dense points separated by sparser regions
of relatively low density

Similarity?

Groups of similar customers
— Similar demographics

— Similar buying behavior

— Similar health

Similar products

— Similar cost

— Similar function

— Similar store

Similarity usually is domain/problem specific

Types of Clustering

Hard Clustering:
— Each object is in one and only one cluster
Soft Clustering:

— Each object has a probability of being in each cluster




Two Types of Data/Distance Info

e N-dim vector space representation and distance metric

Distance (D1,D2) = 777
 Pairwise distances between points (no N-dim space)
+ Similarity/dissimilarity matrix (upper or lower diagonal)
-- 12345678910
-ddddddddd
+ Distance: 0 =near, o =far

+ Similarity: 0= far, % = near
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Agglomerative Clustering

Put each item in its own cluster (641 singletons)

Find all pairwise distances between clusters
Merge the two closest clusters

Repeat until everything is in one cluster

Hierarchical clustering
Yields a clustering with each possible # of clusters

Greedy clustering: not optimal for any cluster size

Merging: Closest Clusters

Nearest centroids

Nearest medoids

Nearest neighbors (shortest link)

Nearest average distance (average link)

Smallest greatest distance (maximum link)
Domain specific similarity measure

— word frequency, TFIDF, KL-divergence, ...

Merge clusters that optimize criterion after merge

— minimum mean_point_happiness




Mean Distance Between Clusters

Y, Dist i, j)
Mean _Dist (c,c,) = =

1

i€c, jec,

Mean Internal Distance in Cluster

Dist (i, j)
Ec jEc,i=j
P

i€Ec jEc,i=j

Mean _ Internal _Dist (¢) =

Minimum Distance Between Clusters

Min _Dist (¢,c,) = 'MIIEV (Dist (i, j))
JEC2

i€cy ,jEC

Mean Point Happiness

1 when cluster (i) = cluster(j)
i {0 when cluster (i) = cluster (j)}

3 8, ¢ Dist (i, j)

Mean _ Happiness =




Recursive Cluste

Recursive Clusters
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Weighted Mean Internal Distance

Mean Point Happiness
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Clustering Proteins

Distance Between Helices

» Vector representation of protein data in 3-D space
that gives X,y,z coordinates of each atom in helix

» Use a program developed by chemists (fortran) to
convert 3-D atom coordinates into average atomic
distances in angstroms between aligned helices

i b nllu
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205,120 pairwise distances




Agglomerative Clustering of Proteins Agglomerative Clustering of Proteins

Cluster Size During Agglomerative Clustering Cluster Size During Agglomerative Clustering

'wsd.BA1" —— Twsd.641" ——

Cluster Purity vs. Cluster Size for PDB Structures
Cluster Size During Agglomerative Clustering - -
T T T T T

Twsd.6417 ——

10 100
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Agglomerative Clustering of Helix Pairs

ol.3p ©.13

C\.35?)

cl.19 cl. @

Agglomerative Clustering

e Greedy clustering
— once points are merged, never separated
— suboptimal w.r.t. clustering criterion
o Combine greedy with iterative refinement
— post processing
— interleaved refinement

Multidimensional Scaling of helix pairs by RMSD

RS
First Principal Compenent First Principal Component

Agglomerative Clustering

e Computational Cost
— O(N?) just to read/calculate pairwise distances
— N-1 merges to build complete hierarchy
+ scan pairwise distances to find closest
+ calculate pairwise distances between clusters
+ fewer clusters to scan as clusters get larger
— Overall O(N?) for simple implementations
E Improvements
— sampling

— dynamic sampling: add new points while merging

— tricks for updating pairwise distances




K-Means Clustering

 Inputs: data set and k (number of clusters)

e Output: each point assigned to one of k clusters

o K-Means Algorithm:

—Initialize the k-means
+assign from randomly selected points
+randomly or equally distributed in space

—Assign each point to nearest mean
—Update means from assigned points

—Repeat until convergence

K-Means Clustering

Efficient

— K << N, so assigning points is O(K*N) < O(N?)

— updating means can be done during assignment

— usually # of iterations << N

— Overall O(N*K*iterations) closer to O(N) than O(N2)
Gets stuck in local minima

— Sensitive to initialization

Number of clusters must be pre-specified

Requires vector space date to calculate means

K-Means Clustering: Convergence

o Squared-Error Criterion

Squared _Error = E E (DiSt(i, mean(c)))z

Converged when SE criterion stops changing

Increasing K reduces SE - can’t determine K by
finding minimum SE

Instead, plot SE as function of K

Soft K-Means Clustering

Instance of EM (Expectation Maximization)

Like K-Means, except each point is assigned to
each cluster with a probability

Cluster means updated using weighted average
Generalizes to Standard_Deviation/Covariance

Works well if cluster models are known




Soft K-Means Clustering (EM)

—Initialize model parameters:
+means
+std_devs
Tt oo

—Assign points probabilistically to
each cluster

—Update cluster parameters from
weighted points

—Repeat until convergence to local
minimum

K-Medoids Clustering

Medoid (c) = pt Ec s.t. MIN(E Dist (i, pt))
(=5

cluster
medoid

What do we do if we can’t
calculate cluster means?
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K-Medoids Clustering

Inputs: data set and k (number of clusters)

Output: each point assigned to one of k clusters

Initialize k medoids

— pick points randomly

Pick medoid and non-medoid point at random
Evaluate quality of swap

— Mean point happiness

Accept random swap if it improves cluster quality




Cost of K-Means Clustering

n cases; d dimensions; k centers; i iterations

compute distance each point to each center: O(n*d*k)
assign each of n cases to closest center: O(n*k)

update centers (means) from assigned points: O(n*d*k)
repeat i times until convergence

overall: O(n*d*k*1i)

much better than O(n?)-O(n3) for HAC

sensitive to initialization - run many times

usually don’t know k - run many times with different k

requires many passes through data set

Scaling Clustering to Big Databases

K-means is still expensive: O(n*d*k*I)
Requires multiple passes through database

Multiple scans may not be practical when:
— database doesn’t fit in memory

— database is very large:
+ 10#-10° (or more) records
+>10? attributes

— expensive join over distributed databases

Graph-Based Clustering

Goals

e | scan of database

» early termination, on-line, anytime algorithm
yields current best answer




Scale-Up Clustering?

e Large number of cases (big n)
e Large number of attributes (big d)

» Large number of clusters (big c)




