Unsupervised Learning and Data Mining

Unsupervised Learning and Data Mining

Clustering

Supervised Learning

- Decision trees
- Artificial neural nets
- · K-nearest neighbor
- Support vectors
- Linear regression
- Logistic regression
- ...

Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)

Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)

• G(x): model learned from training sample D

 Goal: E<(F(x)-G(x))²> is small (near zero) for future samples drawn from F(x)

Supervised Learning

Well Defined Goal:

Learn G(x) that is a good approximation to F(x) from training sample D

Know How to Measure Error:

Accuracy, RMSE, ROC, Cross Entropy, ...

Clustering

≠ Supervised Learning

Clustering

Unsupervised Learning

Supervised Learning

Train Set:

57, M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,	
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,	
69,F,180,0,115,85,40,22,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0	
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0	
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0	
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,	
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,	
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0	
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,	
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0	

Test Set:

Un-Supervised Learning

Train Set:

Test Set:

Un-Supervised Learning

Train Set:

Test Set:

Un-Supervised Learning

Data Set:

....

What to Learn/Discover?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Goals and Performance Criteria?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Clustering

Clustering

• Given:

- Data Set D (training set)
- Similarity/distance metric/information

• Find:

- Partitioning of data
- Groups of similar/close items

Similarity?

- Groups of similar customers
 - Similar demographics
 - Similar buying behavior
 - Similar health
- Similar products
 - Similar cost
 - Similar function
 - Similar store

- ...

• Similarity usually is domain/problem specific

Types of Clustering

- Partitioning
 - K-means clustering
 - K-medoids clustering
 - EM (expectation maximization) clustering

• Hierarchical

- Divisive clustering (top down)
- Agglomerative clustering (bottom up)
- Density-Based Methods
 - Regions of dense points separated by sparser regions of relatively low density

Types of Clustering

- Hard Clustering:
 - Each object is in one and only one cluster
- Soft Clustering:
 - Each object has a probability of being in each cluster

• N-dim vector space representation and distance metric

Distance (D1, D2) = ???

- Pairwise distances between points (no N-dim space)
 - + Similarity/dissimilarity matrix (upper or lower diagonal)

+ Distance:	0 = near,	$\infty = far$	1 2 3
+ Similarity:	0 = far,	∞ = near	4 5 6 7

Agglomerative Clustering

- Put each item in its own cluster (641 singletons)
- Find all pairwise distances between clusters
- Merge the two *closest* clusters
- Repeat until everything is in one cluster
- Hierarchical clustering
- Yields a clustering with each possible *#* of clusters
- Greedy clustering: not optimal for any cluster size

Agglomerative Clustering of Proteins

Merging: Closest Clusters

- Nearest centroids
- Nearest medoids
- Nearest neighbors (shortest link)
- Nearest average distance (average link)
- Smallest greatest distance (maximum link)
- Domain specific similarity measure
 - word frequency, TFIDF, KL-divergence, ...
- Merge clusters that optimize criterion after merge – minimum mean_point_happiness

Minimum Distance Between Clusters $\underline{Min_Dist(c_1,c_2) = \underbrace{MIN}_{i \in c_1, j \in c_2}(Dist(i, j))}$

#楚 ## #卷 #+	111 \$4. 411 \$4	二二二 二二二 二二二二 二二二 二二二 二二二 二二 二 二 二 二 二
業集 幕+	森林 林林	14 22
		TH TT
2번 분 쇼	±.+ _#±	2 # 1M
F# 51	12. 24	** ***
教教 法律	花ね 常都	14 4X
24 44	李祥 事 章	41 <i>4</i> 4
** ***	الدهر الله	
	## 18 学史 5年 学長 2年 学長 4年	부분 3부 3년 2월

Recursive Clusters 04 "mc.5.1000.plot" + 0.35 \$ +\$ z# z# #7 2. 1 15 0.3 0.25 4" # 41 + 4* 1\$ ** *# 0.2 0.15 ** * * * * ** ** *** * * * * * 0.1 \$5 \$# **\$** \$ 0.05 -12 ⊈ -+* 12 + + + *** * ***+ + *** * *** ** *** 0

Recursive Clusters "mc.5.1000.plot" · + · 0.34 ++.+. + + ++ + ++ 0.32 ‡ + + + + + 0.3 0.28 0.26 + · + + + += + + 0.24 + ++ ++ ++ ++ ++ ++ ++ + + + 0.22 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Recursive Clusters

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.4

-0.05

Mean Point Happiness

Distance Between Helices

- Vector representation of protein data in 3-D space that gives x,y,z coordinates of each atom in helix
- Use a program developed by chemists (fortran) to convert 3-D atom coordinates into average atomic distances in angstroms between aligned helices
- 641 helices = 641 * 640 / 2
 - = 205,120 pairwise distances

Agglomerative Clustering of Proteins

Agglomerative Clustering of Proteins

Agglomerative Clustering of Proteins

Agglomerative Clustering of Proteins

Agglomerative Clustering

- Greedy clustering
 - once points are merged, never separated
 - suboptimal w.r.t. clustering criterion
- Combine greedy with iterative refinement
 - post processing
 - interleaved refinement

Agglomerative Clustering

- Computational Cost
 - O(N²) just to read/calculate pairwise distances
 - N-1 merges to build complete hierarchy
 - + scan pairwise distances to find closest
 - + calculate pairwise distances between clusters
 - + fewer clusters to scan as clusters get larger
 - Overall O(N³) for simple implementations
- Improvements
 - sampling
 - dynamic sampling: add new points while merging
 - tricks for updating pairwise distances

K-Means Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters

• K-Means Algorithm:

- -Initialize the k-means
- +assign from randomly selected points +randomly or equally distributed in space
- -Assign each point to nearest mean
- -Update means from assigned points
- -Repeat until convergence

K-Means Clustering: Convergence

• Squared-Error Criterion

Squared _Error =
$$\sum_{c} \sum_{i \in c} (Dist(i, mean(c)))^{i}$$

- Converged when SE criterion stops changing
- Increasing K reduces SE can't determine K by finding minimum SE
- Instead, plot SE as function of K

K-Means Clustering

- Efficient
 - $K \ll N$, so assigning points is $O(K^*N) \ll O(N^2)$
 - updating means can be done during assignment
 - usually # of iterations << N</p>
 - Overall $O(N^*K^*iterations)$ closer to O(N) than $O(N^2)$
- Gets stuck in local minima – Sensitive to initialization
- Number of clusters must be pre-specified
- Requires vector space date to calculate means

Soft K-Means Clustering

- Instance of EM (Expectation Maximization)
- Like K-Means, except each point is assigned to each cluster with a probability
- Cluster means updated using weighted average
- Generalizes to Standard_Deviation/Covariance
- Works well if cluster models are known

Soft K-Means Clustering (EM)

- -Initialize model parameters:
 - +means
 - $+ std_devs$
 - + • •
- -Assign points probabilistically to each cluster
- -Update cluster parameters from weighted points
- -Repeat until convergence to local minimum

What do we do if we can't calculate cluster means?

 1 2 3 4 5 6 7 8 9	1 -	2 d -	3 d d	4 d d	5 d d d -	6 d d d -	7 d d d d d -	8 d d d d d -	9 d d d d d d d -	1 d d d d d d d d d d d	0
9										d	

K-Medoids Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
- •
- Initialize k medoids
 - pick points randomly
- Pick medoid and non-medoid point at random
- Evaluate quality of swap
 - Mean point happiness
- Accept random swap if it improves cluster quality

Cost of K-Means Clustering

- n cases; d dimensions; k centers; i iterations
- compute distance each point to each center: $O(n^*d^*k)$
- assign each of n cases to closest center: O(n*k)
- update centers (means) from assigned points: O(n*d*k)
- repeat i times until convergence
- overall: O(n*d*k*i)
- much better than $O(n^2)$ - $O(n^3)$ for HAC
- sensitive to initialization run many times
- usually don't know k run many times with different k
- requires many passes through data set

Scaling Clustering to Big Databases

- K-means is still expensive: O(n*d*k*I)
- Requires multiple passes through database
- Multiple scans may not be practical when: – database doesn't fit in memory
 - database is very large:
 - $+10^4$ -10⁹ (or more) records
 - $+>10^2$ attributes
 - expensive join over distributed databases

Graph-Based Clustering

Goals

- 1 scan of database
- early termination, on-line, anytime algorithm yields current best answer

Scale-Up Clustering?

- Large number of cases (big n)
- Large number of attributes (big d)
- Large number of clusters (big c)