Multitask Learning

Motivating Example

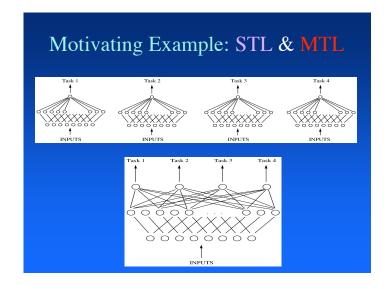
• 4 tasks defined on eight bits B₁-B₈:

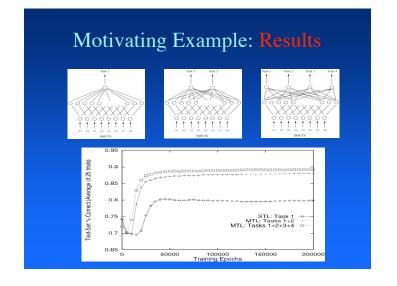
Task 1 = B_1 Parity($B_2 \square B_6$)

Task 2 = $\square B_1$ Parity($B_2 \square B_6$)

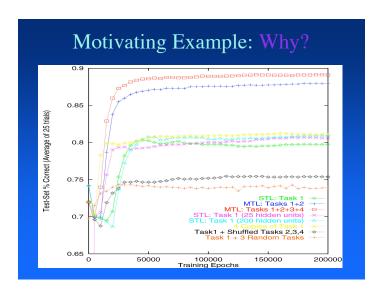
Task 3 = $B_1 \square Parity(B_2 \square B_6)$

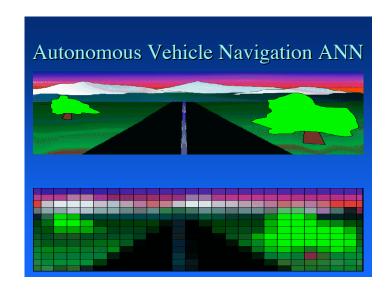
Task $4 = \square B_1 \square Parity(B_2 \square B_6)$

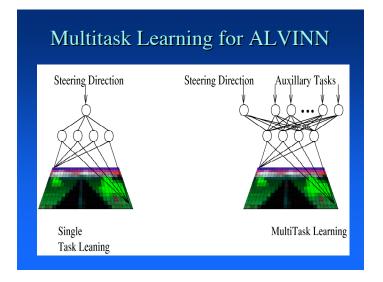


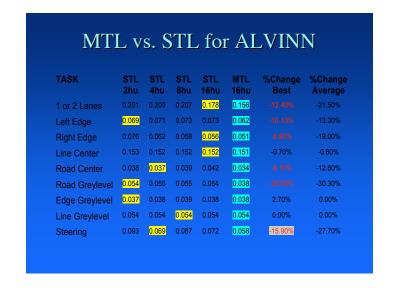


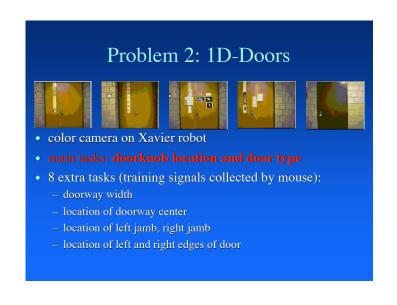
Motivating Example: Why? extra tasks: - add noise? - change learning rate? - reduce herd effect by differentiating hu's? - use excess net capacity? - . . .? - similarity to main task helps hidden layer learn better representation?

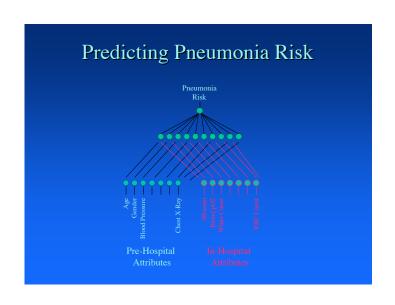


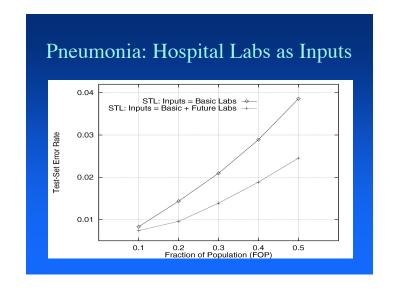


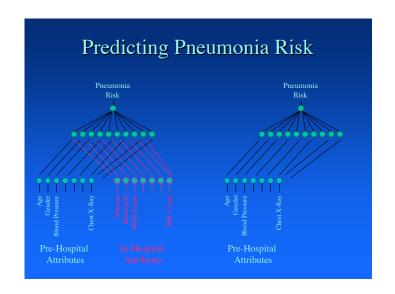


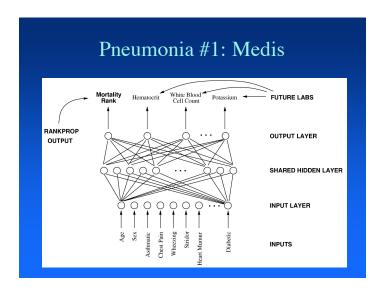


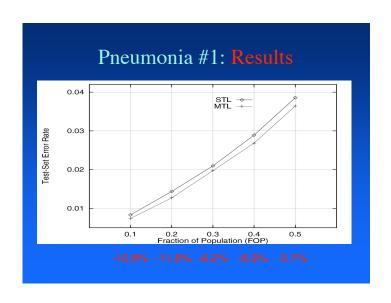




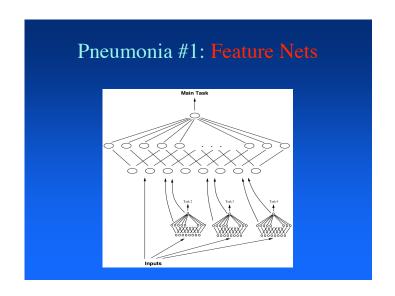


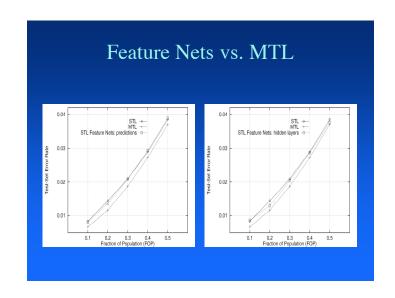






Use imputed values for missing lab tests as extra *inputs*?

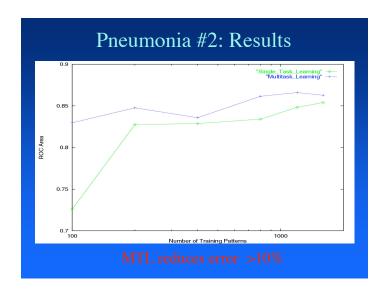




Pneumonia #2: PORT

- 10X fewer cases (2286 patients)
- 10X more input features (200 feats)
- missing features (5% overall, up to 50%)
- main task: dire outcome
- 30 extra tasks currently available
 - dire outcome disjuncts (death, ICU, cardio, ...)
 - length of stay in hospital
 - cost of hospitalization
 - etiology (gramnegative, grampositive, ...)

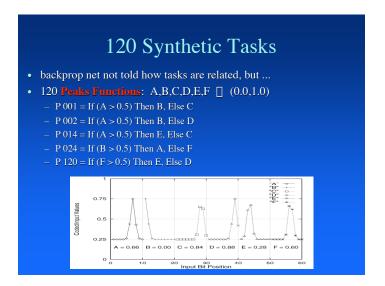
– . . .

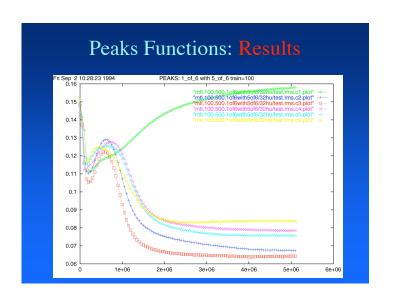


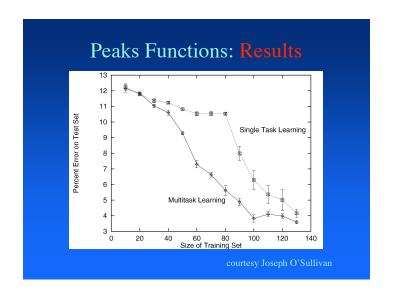
Related?

- related / helps learning (e.g., copy task)
- helps learning / related (e.g., noise task)
- related [correlated (e.g., A+B, A-B)

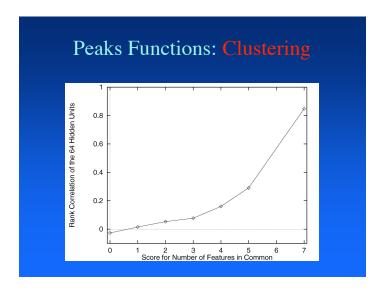
Two tasks are MTL/BP related if there is correlation (positive or negative) between the training signals of one and the hidden layer representation learned for the other







MTL nets cluster tasks by function



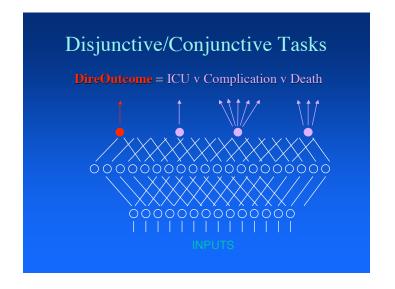
Heuristics: When to use MTL?

- using future to predict present
- time series
- disjunctive/conjunctive tasks
- multiple error metric
- quantized or stochastic tasks
- focus of attention
- sequential transfer
- different data distributions
- hierarchical tasks
- some input features work better as outputs

Multiple Tasks Occur Naturally

- Mitchell's Calendar Apprentice (CAP)
 - time-of-day (9:00am, 9:30am, ...)
 - day-of-week (M, T, W, ...)
 - duration (30min, 60min, ...)
 - location (Tom's office, Dean's office, 5409, ...)

Using Future to Predict Present medical domains autonomous vehicles and robots time series stock market economic forecasting weather prediction spatial series many more



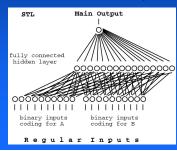
Focus of Attention

- 1D-ALVINN:
 - centerline
 - left and right edges of road

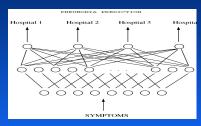
removing centerlines from 1D-ALVINN images hurt MTL accuracy more than STL accuracy

Some Inputs are Better as Outputs

- MainTask = Sigmoid(A)+Sigmoid(B)
- A, B [] ([]5.0, +5.0)
- Inputs A and B coded via 10-bit binary code



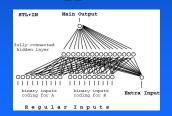
Different Data Distributions

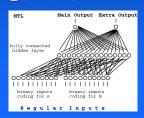


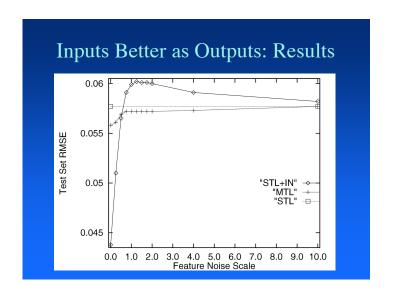
- Hospital 1: 50 cases, rural (Green Acres)
- Hospital 2: 500 cases, urban (Des Moines)
- Hospital 3: 1000 cases, elderly suburbs (Florida)
- Hospital 4: 5000 cases, young urban (LA,SF)

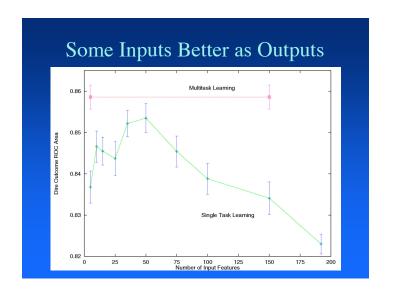
Some Inputs are Better as Outputs

- MainTask = Sigmoid(A)+Sigmoid(B)
- Extra Features:
 - $EF1 = Sigmoid(A) + \square * Noise$
 - $EF2 = Sigmoid(B) + \square * Noise$







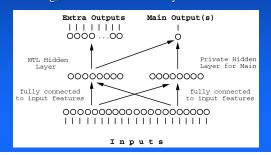


Making MTL/Backprop Better

- Better training algorithm:
 - learning rate optimization
- Better architectures:
 - private hidden layers (overfitting in hidden unit space)
 - using features as both inputs and outputs
 - combining MTL with Feature Nets

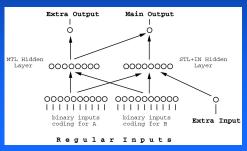
Private Hidden Layers

- many tasks: need many hidden units
- many hidden units: "hidden unit selection problem"
- allow sharing, but without too many hidden units?



Features as Both Inputs & Outputs

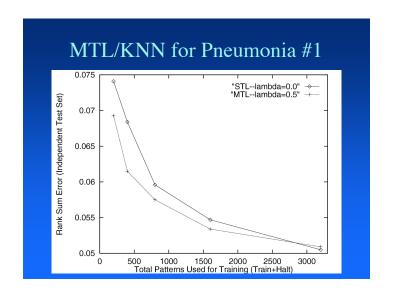
- some features help when used as inputs
- some of those also help when used as outputs
- get both benefits in one net?



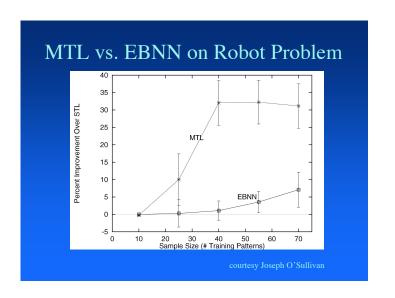
MTL/KNN for Pneumonia #1 0.061 0.061 0.055 0.059 0.059 0.050 0.05

MTL in K-Nearest Neighbor

- Most learning methods can MTL:
 - shared representation
 - combine performance of extra tasks
 - control the effect of extra tasks
- MTL in K-Nearest Neighbor:
 - shared rep: distance metric
 - MTLPerf = $(1-\square)\square$ MainPerf + \square (\square ExtraPerf)



Psychological Plausibility ?



Related Work

- Sejnowski, Rosenberg [1986]: NETtalk
- Pratt, Mostow [1991-94]: serial transfer in bp nets
- Suddarth, Kergiosen [1990]: 1st MTL in bp nets
- Abu-Mostafa [1990-95]: catalytic hints
- Abu-Mostafa, Baxter [92,95]: transfer PAC models
- Dietterich, Hild, Bakiri [90,95]: bp vs. ID3
- Pomerleau, Baluja: other uses of hidden layers
- Munro [1996]: extra tasks to decorrelate experts
- Breiman [1995]: Curds & Whey
- de Sa [1995]: minimizing disagreement
- Thrun, Mitchell [1994,96]: EBNN
- O'Sullivan, Mitchell [now]: EBNN+MTL+Robot

Parallel vs. Serial Transfer

- all information is in training signals
- information useful to other tasks can be lost training on tasks one at a time
- if we train on extra tasks first, how can we optimize what is learned to help the main task most
- tasks often benefit each other mutually
- parallel training allows related tasks to see the entire trajectory of other task learning

Summary/Contributions

- focus on main task improves performance
- >15 problem types where MTL is applicable:
 - using the future to predict the present
 - multiple metrics
 - focus of attention
 - different data populations
 - using inputs as extra tasks
 - . . . (at least 10 more)

most real-world problems fit one of these

Future MTL Work

- output selection
- scale to 1000's of extra tasks
- compare to Bayes Nets
- learning rate optimization

Summary/Contributions

- applied MTL to a dozen problems, some not created for MTL
 - MTL helps most of the time
 - benefits range from 5%-40%
- ways to improve MTL/Backprop
 - learning rate optimization
 - private hidden layers
 - MTL Feature Nets
- MTL nets do unsupervised clustering
- algs for MTL kNN and MTL Decision Trees

Theoretical Models of Parallel Xfer

- PAC models based on VC-dim or MDL
 - unreasonable assumptions
 - + fixed size hidden layers
 - + all tasks generated by one hidden layer
 - + backprop is ideal search procedure
 - predictions do not fit observations
 - + have to add hidden units
 - main problems:
 - + can't take behavior of backprop into account
 - + not enough is known about capacity of backprop nets

Learning Rate Optimization

- optimize learning rates of extra tasks
- goal is maximize generalization of main task
- ignore performance of extra tasks
- expensive!

• performance on extra tasks improves 9%!

Acknowledgements

- advisors: Mitchell & Simon
- committee: Pomerleau & Dietterich
- CEHC: Cooper, Fine, Buchanan, et al.
- co-authors: Baluja, de Sa, Freitag
- robot Xavier: O'Sullivan, Simmons
- discussion: Fahlman, Moore, Touretzky
- funding: NSF, ARPA, DEC, CEHC, JPRC
- SCS/CMU: a great place to do research
- spouse: Diane

