Memory-Based Learning
Instance-Based Learning

K-Nearest Neighbor

— If not true => learning is impossible
— If true => learning reduces to defining “similar”

» © Not all similarities created equal

— predicting a person’s height may depend on
different attributes than predicting their IQ

e
. 1-Nearest Neighbor

N 2
Dist(c,,c,) = \/ _El(attri (c,)-attr(c, ))

NearestNeighbor = MIN].(Dist(cj,c )

test

prediction,, = classj (or valuej)

» - works well if no attribute noise, class noise, class overlap
@ - can learn complex functions (sharp class boundaries)

* as number of training cases grows large, error rate of 1-NN
is at most 2 times the Bayes optimal rate (i.e. if you knew
the true probability of each class for each test case)




. k-Nearest Neighbor

How to choose “k”

N
Dist(c1 \Cy )= El(attri (cl )- attr, (c2 ))2 Large k:
: less sensitive to noise (particularly class noise)
k = NearestNeighbors = {k - MIN (DiSt(C,-sC,eS, ))} better probability estimates for discrete classes
1 L 1k 1k 1 larger training sets allow larger values of k
i o predlcttonm .= zglclassi (or Ezlvaluei) Small k:
) ) captures fine structure of problem space better
e ° Average of k points more reliable when: : may be necessary with small training sets
Balance must be struck between large and small k

As training set approaches infinity, and k grows large,
kNN becomes Bayes optimal

— noise in attributes
— noise in class labels

attribute_2

— classes partially overlap

attribifte_1

1-Nearest Neighbor 15-Nearest Neighbors
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Models usually perform better on training data
than on future test cases

1-NN is 100% accurate on training data!
Leave-one-out-cross validation:

-~ “remove” each case one-at-a-time

— use as test case with remaining cases as train set

— average performance over all test cases

LOOCYV is impractical with most learning
methods, but extremely efficient with MBL!

Distance-Weighted kNN

« tradeoff between small and large k can be difficult
~— use large k, but more emphasis on nearer neighbors?

Wi

k

k
w, * class, E w, *value,
prediction,,, = <=L (or )

test
w. w.

i i

1
- Dist(c,, c,,,)




All algs so far are strict averagers: interpolate, but
o ° Letweight fall-off rapidly with distance #  can’textrapolate

k « ) Do weighted regression, centered at test point,

w, * class, w, * value, weight controlled by distance and KernelWidth
prediction,,,, = +=L (or =— )

“ i " » y + Local regressor can be linear, quadratic, n-th
' 2 ' degree polynomial, neural net, ...

i=1

N Yields piecewise approximation to surface that
kT RernelWidl Dist (¢, € ) 5.9

typically is more complex than local regressor

| o ° KernelWidth controls size of neighborhood that
. s haslarge effect on value (analogous to k)

N 2
D(cl,c2) = o 3(atir,(c1) - atir,(c2))
i=1
« gives all attributes equal weight?
— only if scale of attributes and differences are similar . .
— scale attributes to equal range or equal variance y * if classes are not spherical?

attribifte_1 attribute_1

- assumes spherical classes - if some aFtnbutes are more/less important than
other attributes?

attribute_2

if some attributes have more/less noise in them
than other attributes?

attribifte_1




¥ i~ o Scale attribute ranges or attribute variances to
Dlebey=y 2w, atm(cl) - atm (c2), ®  make them uniform (fast and easy)

Prior knowledge

large weights => attribute is more important . L
small weights =>  attribute is less important Numerical optimization:
zero weights =>  attribute doesn’t matter . — gradient descent, simplex methods, genetic algorithm
— criterion is cross-validation performance
Weights allow kNN to be effective with axis-parallel " - Information Gain or Gain Ratio of single attributes
elliptical classes )
Where do weights come from?

splitting on an attribute

+ Entropy = expected number of bits needed to ) Entropy(S) - E .| Entropy(S,)
encode the f:lass ofa rgndomly drawn + or — 8 oGuainRati (S, A) = vevin 191
example using the optimal info-theory coding ) 1S,]

= 9 E log, 1S,

vEValues(A) ‘S‘

Entropy=-p, log, p, - p_log, p_

v

N
Gain(S, A) = Entropy(S) - E S Entropy(S,)
vEValues(A)




Gain Ratio for Equal Sized n-Way Splits

Consider attribute value differences:
(attr; (c1) — attr;(c2))

Reals:
Integers:
Ordinals:
Booleans:
Nominals?

easy! full continuum of differences
not bad: discrete set of differences
not bad: discrete set of differences
awkward: hamming distances 0 or 1

not good! recode as Booleans?

. N
—® D(cl,c2)= \/2 gain _ratio, - (attri(cl) - attr,.(c2))2

i=1

+ weight with gain_ratio after scaling?

-
*® Curse of Dimensionality

points becomes larger and more uniform

if number of relevant attributes is fixed, increasing the

*

*

® - as number of dimensions increases, distance between
>

Py

p number of less relevant attributes may swamp distance

[relevant 2 irrelevant 2
® piete2)- S (ar e - anr ) +°S (am.(cl)-am.(cz))
PN i=1 ! ! j=1 J J

when more irrelevant than relevant dimensions, distance
becomes less reliable

solutions: larger k or KernelWidth, feature selection,
feature weights, more complex distance functions




Lazy learning: don’t do any work until you know what you
want to predict (and from what variables!)
never need to learn a global model

many simple local models taken together can represent a more
complex global model

better focused learning

handles missing values, time varying distributions, ...
Very efficient cross-validation
Intelligible learning method to many users
Nearest neighbors support explanation and training
Can use any distance metric: string-edit distance, ...

§® Combine KNN with ANN

Train neural net on problem

Use outputs of neural net or hidden unit
activations as new feature vectors for each point

Use KNN on new feature vectors for prediction
Does feature selection and feature creation
Sometimes works better than KNN or ANN

Curse of Dimensionality:

often works best with 25 or fewer dimensions
Run-time cost scales with training set size
Large training sets will not fit in memory
Many MBL methods are strict averagers

Sometimes doesn’t seem to perform as well as other
methods such as neural nets

Predicted values for regression not continuous

Condensed representations to reduce memory requirements
and speed-up neighbor finding to scale to 10°-10'2 cases

Learn better distance metrics
Feature selection

Opverfitting, VC-dimension, ...
MBL in higher dimensions

MBL in non-numeric domains:
Case-Based Reasoning
Reasoning by Analogy
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In many supervised learning problems, all the information
you ever have about the problem is in the training set.

Why do most learning methods discard the training data
after doing learning?
Do neural nets, decision trees, and Bayes nets capture al/
the information in the training set when they are trained?
In the future, we’ll see more methods that combine MBL
with these other learning methods.

to improve accuracy

for better explanation

for increased flexibility




