

~~~	Motivating Example
5.	
20	
5.	
- 3	



~	
<	1-Nearest Neighbor
50	
20	$N(\dots, \lambda^2)$
</th <th>$Dist(c_1, c_2) = \sqrt{\sum_{i=1}^{n} (attr_i(c_1) - attr_i(c_2))}$</th>	$Dist(c_1, c_2) = \sqrt{\sum_{i=1}^{n} (attr_i(c_1) - attr_i(c_2))}$
	NearestNeighbor = $MIN$ (Dist(c, c))
2.	(2) to (c)
3	$prediction_{test} = class_j (or value_j)$
	works well if no attribute holse, class holse, class overlap
	as number of training cases grows large, error rate of 1-NN
-0	is at most 2 times the Bayes optimal rate (i.e. if you knew
-3	the true probability of each class for each test case)



	How to choose "k"
	Large k:
20	<ul> <li>less sensitive to noise (particularly class noise)</li> </ul>
~?	<ul> <li>better probability estimates for discrete classes</li> </ul>
~ >	<ul> <li>larger training sets allow larger values of k</li> </ul>
	Small k:
-0	<ul> <li>captures fine structure of problem space better</li> <li>may be necessary with small training sets</li> </ul>
	Balance must be struck between large and small k
	As training set approaches infinity, and k grows large, kNN becomes Bayes optimal



## Combine KNN with ANN

Train neural net on problem

N N N N

۲

- Use outputs of neural net or hidden unit
- ...... activations as new feature vectors for each point
  - Use KNN on new feature vectors for prediction
  - Does feature selection and feature creation
  - Sometimes works better than KNN or ANN

	Current Research in MBL
	Condensed representations to reduce memory requirements and speed-up neighbor finding to scale to $10^{6}$ – $10^{12}$ cases
- 3	Learn better distance metrics
-9	Feature selection
-0	Overfitting, VC-dimension,
-0	MBL in higher dimensions
-9	MBL in non-numeric domains:
12	<ul> <li>Case-Based Reasoning</li> </ul>
	<ul> <li>Reasoning by Analogy</li> </ul>
Ľ,	



VVV	•	Closing Thought
V V V		In many supervised learning problems, all the information you ever have about the problem is in the training set.
VV	-0 -0	Why do most learning methods discard the training data after doing learning?
1		Do neural nets, decision trees, and Bayes nets capture <i>all</i> the information in the training set when they are trained?
-		In the future, we'll see more methods that combine MBL with these other learning methods.
•		<ul> <li>to improve accuracy</li> <li>for better explanation</li> </ul>
0	/0 /0	<ul> <li>for increased flexibility</li> </ul>