

Supervised Learning

- $y=F(x)$: true function (usually not known)
- D: training sample drawn from $\mathrm{F}(\mathrm{x})$

57, M, 195, $0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$

Real Data: C-Section Prediction

Do Decision Tree Demo Now!
collaboration with Magee Hospital, Siemens Research, Tom Mitchell

Search Space

all possible sequences of all possible tests
very large search space, e.g., if N binary attributes:

- 1 null tree
- N trees with 1 (root) test
- $\mathrm{N}^{*}(\mathrm{~N}-1)$ trees with 2 tests
- $\mathrm{N}^{*}(\mathrm{~N}-1)^{*}(\mathrm{~N}-1)$ trees with 3 tests
$-\approx \mathrm{N}^{4}$ trees with 4 tests

maximum depth is N
size of search space is exponential in number of attributes
too big to search exhaustively
exhaustive search might overfit data (too many models)
so what do we do instead?

Top-Down Induction of Decision Trees

TDIDT
a.k.a. Recursive Partitioning
find "best" attribute test to install at current node

- split data on the installed node test
- repeat until:
- all nodes are pure
- all nodes contain fewer than k cases
- no more attributes to test
- tree reaches predetermined max depth
- distributions at nodes indistinguishable from chance

Find "Best" Split?

0.6234
0.4412

Splitting Rules

Information Gain = reduction in entropy due to splitting on an attribute

- Entropy = how random the sample looks
$=$ expected number of bits needed to encode class of a randomly drawn + or - example using optimal information-theory coding

Entropy $=\square p_{+} \log _{2} p_{+} \square p_{\square} \log _{2} p_{\square}$
$\operatorname{Gain}(S, A)=\operatorname{Entropy}(S) \square \square_{v \square \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)$

Entropy

Information Gain

$\operatorname{Entropy}(S)=\square p_{+} \log _{2} p_{+} \square p_{\square} \log _{2} p_{\square}=\square \frac{50}{125} \log _{2} \frac{50}{125} \square \frac{75}{125} \log _{2} \frac{75}{125}=0.6730$
A1: Entropy $($ left $)=\square \frac{40}{55} \log _{2} \frac{40}{55} \square \frac{55}{55} \log _{2} \frac{15}{55}=0.5859$
A1: Entropy $($ right $)=\square \frac{10}{70} \log _{2} \frac{10}{70} \square \frac{60}{70} \log _{2} \frac{60}{70}=0.4101$
$\operatorname{Gain}(S, A 1)=\operatorname{Entropy}(S) \square \square_{v \square \text { Values }(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)=0.6730 \square \frac{55}{125} 0.5859 \square \frac{70}{125} 0.4101=0.1855$

Information Gain

$\operatorname{Entropy}(S)=\square p_{+} \log _{2} p_{+} \square p_{\square} \log _{2} p_{\square}=\square \frac{50}{125} \log _{2} \frac{50}{125} \square \frac{75}{125} \log _{2} \frac{75}{125}=0.6730$
A2 : Entropy $($ left $)=\square \frac{25}{40} \log _{2} \frac{25}{40} \square \frac{15}{40} \log _{2} \frac{15}{40}=0.6616$
A2 : Entropy $($ right $)=\square \frac{25}{85} \log _{2} \frac{25}{85} \square \frac{60}{85} \log _{2} \frac{60}{85}=0.6058$
$\operatorname{Gain}(S, A 2)=\operatorname{Entropy}(S) \square \square_{v \square \text { Values }(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)=0.6730 \square \frac{40}{125} 0.6616 \square \frac{85}{125} 0.6058=0.0493$

Splitting Rules

GINI Index

node impurity weighted by node size

$$
\begin{aligned}
& \operatorname{GINI}_{\text {node }}(\text { Node })=1 \square \square_{c \square \text { classes }}\left[p_{c}\right]^{2} \\
& \operatorname{GINI}_{\text {split }}(A)=\square_{v \square \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{GINI}\left(N_{v}\right)
\end{aligned}
$$

Experiment

- Randomly select \# of training cases: 2-1000
- Randomly select fraction of +'s and -'s: [0.0,1.0]
- Randomly select attribute arity: 2-1000
- Randomly assign cases to branches!!!!!
- Compute IG, GR, GINI

Pre-Pruning (Early Stopping)

- Evaluate splits before installing them:
- don't install splits that don't look worthwhile - when no worthwhile splits to install, done
- Seems right, but:
- hard to properly evaluate split without seeing what splits would follow it (use lookahead?)
- some attributes useful only in combination with other attributes (e.g., diagonal decision surface)
- suppose no single split looks good at root node?

Post-Pruning

Grow decision tree to full depth (no pre-pruning)

- Prune-back full tree by eliminating splits that do not appear to be warranted statistically
Use train set, or an independent prune/test set, to evaluate splits
- Stop pruning when remaining splits all appear to be warranted

Alternate approach: convert to rules, then prune rules

Converting Decision Trees to Rules

each path from root to a leaf is a separate rule:
fetal $_$presentation $=1:+822+116$ (tree) 0.87590 .12410
| previous_csection $=0:+767+81$ (tree) 0.9040 .0960
| | primiparous $=1:+368+68$ (tree) 0.84320 .15680
| | | fetal_distress $=0:+334+47$ (tree) 0.87570 .12430
| | | | birth_weight < 3349: +201+10.555 (tree) 0.94820 .051760
fetal $_$presentation $=2:+3+29$ (tree) 0.10610 .89391
fetal $_$presentation $=3:+8+22$ (tree) 0.27420 .72581
if $(f p=1 \& \neg p c \&$ primip \& $\neg f d \& b w<3349)=>0$,
if $(f p=2)=>1$,
if $(f p=3)=>1$.

Missing Attribute Values

Many real-world data sets have missing values

- Will do lecture on missing values later in course
- Decision trees handle missing values easily/well.

Cases with missing attribute go down:

- majority case with full weight
- probabilistically chosen branch with full weight
- all branches with partial weight

Greedy vs. Optimal

Optimal

- Maximum expected accuracy (test set)
- Minimum size tree
- Minimum depth tree
- Fewest attributes tested
- Easiest to understand

XOR problem

- Test order not always important for accuracy
- Sometimes random splits perform well (acts like KNN)

Classification vs. Prob Prediction

From Provost, Domingos pet-mlj 2002

Bagging (Model Averaging)

- Train many trees with different random samples
- Average prediction from each tree

Decision Tree Methods

MML:

splitting criterion?
large trees
Bayesian smoothing
SMM:
MML tree after pruning
much smaller trees
Bayesian smoothing
Bayes:
Bayes splitting criterion
full size tree
Bayesian smoothing

Popular Decision Tree Packages

- ID3 (ID4, ID5, ...) [Quinlan]
research code with many variations introduced to test new ideas
- CART: Classification and Regression Trees [Breiman]
best known package to people outside machine learning
1st chapter of CART book is a good introduction to basic issues
- C4.5 (C5.0) [Quinlan]
most popular package in machine learning community
both decision trees and rules
IND (INDuce) [Buntine]
decision trees for Bayesians (good at generating probabilities)
available from NASA Ames for use in U.S.

Advantages of Decision Trees

- TDIDT is relatively fast, even with large data sets $\left(10^{6}\right)$ and many attributes $\left(10^{3}\right)$
advantage of recursive partitioning: only process all cases at root
- Can be converted to rules
- TDIDT does feature selection
- TDIDT often yields compact models (Occam's Razor)
- Decision tree representation is understandable
- Small-medium size trees usually intelligible

Current Research

- Increasing representational power to include M-of-N splits, non-axis-parallel splits, perceptron-like splits, ...
- Handling real-valued attributes better
- Using DTs to explain other models such as neural nets
- Incorporating background knowledge
- TDIDT on really large datasets
>> 10^{6} training cases
$\gg 10^{3}$ attributes
- Better feature selection
- Unequal attribute costs
- Decision trees optimized for metrics other than accuracy

Interpreting Results

Confidence Interval of Mean

$$
\begin{aligned}
& \operatorname{StdErr}(\bar{x})=\operatorname{StdDev}(\bar{x})=S / \sqrt{N} \\
& \pm 1 S \square 68 \% \\
& \pm 2 S \square 95 \% \\
& \pm 3 S \square 99 \%
\end{aligned}
$$

Confidence_Interval
$95 \%: \bar{X} \square 1.96 S<$ true_mean $<\bar{X}+1.96 S$

Error Bars

- Typically 1 or 2 standard errors about mean
- Always specify what error bars are
- If 1 StdErr error bars do not overlap over regions of graph, typically assume results significantly different in regions

Hypothesis: Two Pops Have Same Mean

- t-test
- Given sample sizes, means, and variances, what are chances of seeing this large a difference in mean by chance?

$$
\begin{aligned}
& t=\frac{\bar{X}_{1} \square \bar{X}_{2}}{S_{\text {pooled }} \sqrt{\left(1 / N_{1}\right)+\left(1 / N_{2}\right)}} \\
& S_{\text {pooled }}=\sqrt{\frac{\left(N_{1} \square 1\right) S_{1}^{2}+\left(N_{2} \square 1\right) S_{2}^{2}}{N_{1}+N_{2} \square 2}}
\end{aligned}
$$

