? Supervised Learning

Decision trees
Artificial neural nets
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@ ° K-nearest neighbor
Support Vector Machines (SVMs)
Linear regression

Logistic regression

Supervised Learning

* y=F(x): true function (usually not known)
* D: training sample drawn from F(x)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
717,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1




® Supervised Learning

Train Set:

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
717,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1
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Q 574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
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Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0

Supervised Learning

F(x): true function (usually not known)
D: training sample drawn from F(x)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0

G(x): model learned from training sample D

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ?

Goal: E<(F(x)-G(x))*>> is small (near zero) for
future test samples drawn from F(x)




Decision Trees

A Simple Decision Tree

Surmy Overcast

Normal

\

Yes




;’ Representation

internal node =
- attribute test

Sunny  Overcast Kain <

- attribute value

Tl af node =
: classification




Small Decision Tree Trained on 1000 Patients:

+833+167 (tree) 0.8327 0.1673 0

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous csection = 0: +767+81 (tree) 0.904 0.096 0

| | primiparous = 0: +399+13 (tree) 0.9673 0.03269 0

| | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | | fetal distress = 0:+334+47 (tree) 0.8757 0.1243 0

| | | | birth weight <3349:+201+10.555 (tree) 0.9482 0.05176 0
| | | | birth weight>=3349: +133+36.445 (tree) 0.783 0.217 0
| | | fetal distress = 1:+34+21 (tree) 0.6161 0.3839 0

| previous csection = 1: +55+35 (tree) 0.6099 0.3901 0

fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1

Real Data: C-Section Prediction

Do Decision Tree Demo Now!

collaboration with Magee Hospital, Siemens Research, Tom Mitchell




Demo summary:

Fast

Reasonably intelligible

Larger training sample => larger tree
Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

Search Space

« all possible sequences of all possible tests
 very large search space, e.g., if N binary attributes:
1 null tree -
N trees with 1 (root) test <:
N*(N-1) trees with 2 tests .<<I
N*(N-1)*(N-1) trees with 3 tests
~ N* trees with 4 tests <:§
maximum depth is N
* size of search space is exponential in number of attributes
too big to search exhaustively

exhaustive search might overfit data (too many models)
so what do we do instead?




« TDIDT
+ ak.a. Recursive Partitioning
— find “best” attribute test to install at current node
— split data on the installed node test
— repeat until:
all nodes are pure
all nodes contain fewer than k cases
no more attributes to test

tree reaches predetermined max depth
distributions at nodes indistinguishable from chance

What is a Good Split?

Attribute_1 ? Attribute_2 ?




What is a Good Split?

Attribute_1 ? Attribute_2 ?

Find “Best” Split?

Attribute_1 ? Attribute_2 ?

right left right

[ #Class, ] . [ #Class, ]
I_# Class,+#Class, J |_# Class,+# Class, J

leftnode rightnode

0.6234 0.4412




s Splitting Rules

 Information Gain = reduction in entropy due to
splitting on an attribute

* Entropy = how random the sample looks

* = expected number of bits needed to
encode class of a randomly drawn + or — example
using optimal information-theory coding

Entropy=-p_ log, p, —p_log, p_

_ ;5|
ain(S,A) = Entropy(S) - 2 W Entropy(S,,)
vE&Values(A)

0.40 0.60

fraction in class 1




Informatlon Gain

Attribute_1 ?

‘ 50 50 75 75
: Entropy(S) = —p. 1 —p1 =~ iog, 2~ Pog, 2 _0.6730
@ Entropy(S)=-p,log, p, - p_log, p. 1251982125 " 125 % s
40 40 55 15
AL: Entropy(left) == 1o 2 100,22 20.5859
niropy(left) = = 5108, o = S5 loga g
10 10 60 60
Al: Ent ight) = - log, — - Zog, 22 0.4101
niropy(right) = 7008275 " 510827

= ® Gain(S,Al) = Entropy(S)~ Y, ‘S | Entropy(S,) =0.6730 - 15—50 5859 -—0 4101=0.1855

VvEValues(A)

Informatlon Gain

Attribute_2 ?

left right

50 50 75 75

B Entropy(S)=-p,1 —p.l L2 10g, 2 20,6730
® Entropy(S)=-p,log,p, - p_log, p_ = 3155 08 o100 o
25 25 15, 15

A2: Entropy(left) = -==log, == - ——log,— = 0.6616
nirepy(lefy==" 108, 5 = 1o

25 25 60 60
A2: Ent ight) = ——1 —1 =0.6058
ntropy(right) 35 08, o 85 85 08, o5 85

= ® Guin(S.A2) = Entropy(S)- Y, 5. Entropy(S,) =0.6730 - —0 6616 - 7o 6058 =0.0493

VEValues(A) ‘




Attribute_2 ?

left right left right

InfoGain = 0.1855 InfoGain = 0.0493

Splitting Rules

* Problem with Node Purity and Information Gain:

— prefer attributes with many values

— extreme cases:
+ Social Security Numbers
* patient ID’s
* integer/nominal attributes with many values (JulianDay)

11



S Splitting Rules

£

InformationGain

GainRatio(S,A) = -
CorrectionFactor

S
Entropy(S) - E - Entropy(S,)

vEValues(A) |S

E SV|10g2 |SV|
NN

vEValues(A)

GainRatio(S,A) =

Gain_Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

o
=3
S

o
=)
S

g
o
S

w
o
S

n
=3
S

ABS(Correction Factor)

o
s}

e
o
S

20 30
Number of Splits
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Splitting Rules

* GINI Index

— node impurity weighted by node size

GIMI,,,(Node)=1- Y [p,T’
cEclasses

GINI

split

(A) = E iGINI(NV)

vEValues(A) |S

? Experiment

Randomly select # of training cases: 2-1000
Randomly select fraction of +’s and -’s: [0.0,1.0]
Randomly select attribute arity: 2-1000

Compute IG, GR, GINI

741 cases: 309+, 432-
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Info_Gain

+ "ns'.ig.gr.g'i" msing'1:2 '
+ o+

Good Splits

Info Gain

Poor Splits

300 400 500 600 700 800 900 1000
Attribute Arity (Number of Attribute Values)

"ns.ig.gr.gr' using 1:3  +

Good Splits

Gain Ratio

Poor Splits

- i 4
e IR S
200 300 700 800 900 1000

Attribute Arity (Number of Attribute Values)




i . GINI Score

-

"ns‘.ig.gng'i" using‘ 1:4 Ty

T

iy

Poor Splits
Ari T

T
ottt

GINI Score

Good Splits

+y T
o +«+wﬁ"t?

600 700 800 900 1000
Attribute Arity (Number of Attribute Values)

Info Gain

Gain Ratio




g2 GINI Score vs. Gain_Ratio

"ns.ig.gr.gi' using 3:4  + ]
&
N
+ 4

GINI Score

L L
-0.6 -0.4
Gain Ratio

Attribute Types

Boolean
Nominal
Ordinal
Integer

Continuous
— Sort by value, then find best threshold for binary split
— Cluster into n intervals and do n-way split

16



Overfitting

09

Accuracy

Ontraining data ——
On test data ———

30 40 50 60 70 80 90

Size of tree (number of nodes)

©Tom Mitchell, McGraw Hill, 1997

Machine Learning LAW #1

Because performance on data used for
training often looks optimistically good,
you should NEVER use test data for any
part of learning.

17



 Evaluate splits before installing them:
— don’t install splits that don’t look worthwhile
— when no worthwhile splits to install, done
© Seems right, but:

— hard to properly evaluate split without seeing what
splits would follow it (use lookahead?)

— some attributes useful only in combination with other
attributes (e.g., diagonal decision surface)

— suppose no single split looks good at root node?

Post-Pruning

Grow decision tree to full depth (no pre-pruning)

Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

Use train set, or an independent prune/test set, to
evaluate splits

Stop pruning when remaining splits all appear to
be warranted

Alternate approach: convert to rules, then prune
rules

18



o Converting Decision Trees to Rules

 each path from root to a leaf is a separate rule:

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous csection = 0: +767+81 (tree) 0.904 0.096 0

| | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | | fetal distress = 0:+334+47 (tree) 0.8757 0.1243 0

| | | | birth weight<3349:+201+10.555 (tree) 0.9482 0.05176 0
fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1

if (fp=1 & —pc & primip & —fd & bw<3349) => 0,
if (p=2) => 1,
if (fp=3) => L

Missing Attribute Values

* Many real-world data sets have missing values

* Will do lecture on missing values later in course

* Decision trees handle missing values easily/well.

Cases with missing attribute go down:
— majority case with full weight
— probabilistically chosen branch with full weight
— all branches with partial weight

19



Optimal
Maximum expected accuracy (test set)
Minimum size tree
Minimum depth tree
Fewest attributes tested
Easiest to understand

XOR problem
Test order not always important for accuracy
Sometimes random splits perform well (acts like KNN)

Decision Tree Predictions

Classification into discrete classes
Simple probability for each class
Smoothed probability

Probability with threshold(s)

20



* Accuracy
High accuracy doesn’t mean good performance
Accuracy can be misleading
What threshold to use for accuracy?

® ° Root-Mean-Squared-Error

1 test
RMSE = \/ 2

i=1

(1-Pred_Prob, (True_Class.))’ / # test

* Many other measures: ROC, Precision/Recall, ...

# < Will do lecture on performance measures later in course

Machine Learning LAW #2

ALWAYS report baseline performance
(and how you defined it if not obvious).

21
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A Simple Two-Class Problem

number cases

From Provost, Domingos pet-mlj 2002

Original — A
C4.4 Estimate

C4.5 Estimate

1 2 3 4
x value

From Provost, Domingos pet-mlj 2002

22



§° A Harder Two-Class Problem

Class 0 Probability

class 0 probability

3 4
x value

From Provost, Domingos pet-mlj 2002

Classification vs. Prob Prediction

class 0 probability

Class 0 Probability — i
c4.5 |
Ca.4 o

-1 0 1 2 3 4
x value

From Provost, Domingos pet-mlj 2002

23



? Predicting Probabilities with Trees

Q
£
-® ° Small Tree
> — few leaves
— few discrete probabilities
’ « Large Tree
- — many leaves
— few cases per leaf
— few discrete probabilities
— probability estimates based on small/noisy samples

* What to do?

g
e
Y
*
>
2

— correct estimates from small samples at leaves
* Average many trees

— average of many things each with a few discrete values
is more continuous

— averages improve quality of estimates

24



Laplacian Smoothing

Small leaf count: 4+, 1—
Maximum Likelihood Estimate: k/N
~ P(H)=4/5=0.8; P(-)=1/5=0.2?
Could easily be 3+, 2- or even 2+, 3-, or worse
Laplacian Correction: (k+1)/(N+C)
— P(+) = (4+1)/(5+2) = 5/7=0.7143
~ P(0) = (1+1)/(5+2) = 2/7 = 0.2857
~ IfN=0, P(+)=P(-) = 1/2
— Bias towards P(class) = 1/C

1 Bagglng (Model AVel‘agiIlg)

* Train many trees with different random samples

* Average prediction from each tree

25



Results

Table II. Summary of experimental results: AUC comparisons.

[ Systems Wins-Ties-Losses ~ Avg. diff. (%) Sign test Wilcoxon test
2.0 .

C4.4 vs. C4.5 18-1-6
C4.4 vs. C4.5-L 13-3-9

| [ C45-L vs. C45 21-2-2

C4.4-B vs. C4.4 23-2-0
C4.4-B vs. C4.5-B 11-5-9

‘ C4.5-B vs. C4.5 24-1-0

no pruning or collapsing
Laplacian Smoothing
bagging

From Provost, Domingos pet-mlj 2002

Decision Tree Methods

« ID3:
info gain
full tree
no pruning
*  CART (Classification and Regression Trees):
subsetting of discrete attributes (binary tree)
GINI criterion
“twoing” criterion for splitting continuous attributes
((Pleft*Pright)*SUM,((P (left)-P (right))?)
stop splitting when split achieves no gain, or <= 5 cases
cost-complexity pruning: minimize tree error + alpha*no-leaves
o C4:
subsetting of discrete attributes (binary tree)
gain ratio
pessimistic pruning

26
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Decision Tree Methods

*+ MML:
splitting criterion?
large trees
Bayesian smoothing

° SMM:
MML tree after pruning
much smaller trees
Bayesian smoothing

® . Bayes:

Bayes splitting criterion
full size tree
Bayesian smoothing

Popular Decision Tree Packages

ID3 (ID4, IDS, ...) [Quinlan]
research code with many variations introduced to test new ideas
CART: Classification and Regression Trees [Breiman]
best known package to people outside machine learning
Ist chapter of CART book is a good introduction to basic issues
C4.5 (C5.0) [Quinlan]
most popular package in machine learning community
both decision trees and rules
IND (INDuce) [Buntine]
decision trees for Bayesians (good at generating probabilities)
available from NASA Ames for use in U.S.

27



TDIDT is relatively fast, even with large data sets (10°)
and many attributes (103)

advantage of recursive partitioning: only process all cases at root
Can be converted to rules
TDIDT does feature selection
TDIDT often yields compact models (Occam’s Razor)
Decision tree representation is understandable
Small-medium size trees usually intelligible

Decision Trees are Intelligible

28



Weaknesses of Decision Trees

Large or complex trees can be just as unintelligible as
other models

Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes...

Don’t handle real-valued parameters as well as Booleans

If model depends on summing contribution of many
different attributes, DTs probably won’t do well

DTs that look very different can be same/similar

Usually poor for predicting continuous values (regression)
Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree

29



Regression doesn’t work
Model intelligibility is important
Problem does not depend on many features

— Modest subset of features contains relevant info
— not vision

Speed of learning is important

Missing values

Linear combinations of features not critical
Medium to large training sets

Current Research

Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, ...

Handling real-valued attributes better

Using DTs to explain other models such as neural nets
Incorporating background knowledge

TDIDT on really large datasets

>> 106 training cases
>> 103 attributes

Better feature selection
Unequal attribute costs
Decision trees optimized for metrics other than accuracy

30
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Regression Trees vs. Classification

 Split criterion: minimize SSE at child nodes
* Tree yields discrete set of predictions

# test
SSE = ) (True, - Pred,)’

i=1

Interpreting Results

31



D E@—x)

i=1
N

Variance(x) = S* =

StdDev(x) = S = 4/Var(x)

3 Confidence Interval of Mean

StdErr(X) = StdDev(X) = S/AIN

+1S = 68%
+25 =95%
+35 =99%

Confidence _ Interval
95% : X —1.96S < true _mean < X +1.96S

32



Typically 1 or 2 standard errors about mean
Always specify what error bars are

If 1 StdErr error bars do not overlap over regions of graph,
typically assume results significantly different in regions

‘Tset Accuracy vs. Train Size

Hypothesis: Two Pops Have Same Mean

° t-test
* Given sample sizes, means, and variances, what
are chances of seeing this large a difference in
mean by chance?
X, - X,
S pooteaVA/ND) + (1/N)

¢ \/ (N, =S + (N, - 1S,

pooled —

N,+N, -2

33



calculate t statistic (see previous slide)
Find critical values of't in table for alpha = 0.05 (or 0.01,
0.001) with (N,+N,-2) degrees of freedom
One-sided:
testing one mean is larger than other
E.g., for (alpha=0.05, N,=N,=10): t=1.734
Two-sided:

testing means are different
E.g., for (alpha=0.05, N,=N,=10): t=2.101
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