
1

Supervised Learning

• Decision trees

• Artificial neural nets

• K-nearest neighbor

• Support Vector Machines (SVMs)

• Linear regression

• Logistic regression

• ...

Supervised Learning

• y=F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0           0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0          1
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0            0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0             0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1           1

…
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Supervised Learning

Train Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1

69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0

18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0

54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1

84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0           0

89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0          1

49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0            0

40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0

74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0             0

77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1           1

…

Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0            ?

Supervised Learning

• F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1

• G(x): model learned from training sample D
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0            ?

• Goal: E<(F(x)-G(x))2> is small (near zero) for
future test samples drawn from F(x)
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Decision Trees

A Simple Decision Tree

©Tom Mitchell, McGraw Hill, 1997
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Representation

 internal node = 
attribute test

 branch =
attribute value

 leaf node = 
classification

©Tom Mitchell, McGraw Hill, 1997

A Real Decision Tree
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A Real Decision Tree

+833+167 (tree) 0.8327 0.1673 0
fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
|   previous_csection = 0: +767+81 (tree) 0.904 0.096 0
|   |   primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
|   |   primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
|   |   |   fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
|   |   |   |   birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
|   |   |   |   birth_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
|   |   |   fetal_distress = 1: +34+21 (tree) 0.6161 0.3839 0
|   previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

Small Decision Tree Trained on 1000 Patients:

Real Data: C-Section Prediction

Do Decision Tree Demo Now!

collaboration with Magee Hospital, Siemens Research, Tom Mitchell
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Real Data: C-Section Prediction

Demo summary:

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

• Fast

• Reasonably intelligible

• Larger training sample => larger tree

• Different training sample => different tree

• all possible sequences of all possible tests
• very large search space, e.g., if N binary attributes:

– 1 null tree
– N trees with 1 (root) test
– N*(N-1) trees with 2 tests
– N*(N-1)*(N-1) trees with 3 tests
– ≈ N4 trees with 4 tests
– maximum depth is N

• size of search space is exponential in number of attributes
– too big to search exhaustively
– exhaustive search might overfit data (too many models)
– so what do we do instead?

Search Space
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Top-Down Induction of Decision Trees

• TDIDT
• a.k.a. Recursive Partitioning

– find “best” attribute test to install at current node
– split data on the installed node test
– repeat until:

• all nodes are pure
• all nodes contain fewer than k cases
• no more attributes to test
• tree reaches predetermined max depth
• distributions at nodes indistinguishable from chance

What is a Good Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

50+,0- 0+,75-

left right left right
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What is a Good Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

Find “Best” Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

† 

leftnode

# Class1

# Class1+#Class2

È 

Î Í 
˘ 

˚ ˙ 
•

# Class2

# Class1+# Class2

È 

Î Í 
˘ 

˚ ˙ 
rightnode

0.6234 0.4412
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Splitting Rules

• Information Gain = reduction in entropy due to
splitting on an attribute

• Entropy = how random the sample looks

•               = expected number of bits needed to
encode class of a randomly drawn + or – example
using optimal information-theory coding

Entropy = - p+ log2 p+ - p- log2 p-

Gain(S, A) = Entropy(S) -
Sv
S

Entropy(Sv )
vŒValues(A)

Â

Entropy

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

fraction in class 1
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tr
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y



10

Information Gain

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

left right

† 

Entropy(S) = -p+ log2 p+ - p- log2 p- = -
50

125
log2

50
125

-
75

125
log2

75
125

= 0.6730

A1: Entropy(left) = -
40
55

log2
40
55

-
55
55

log2
15
55

= 0.5859

A1: Entropy(right) = -
10
70

log2
10
70

-
60
70

log2
60
70

= 0.4101

Gain(S,A1) = Entropy(S) -
Sv

S
Entropy(Sv )

v ŒValues(A )
Â = 0.6730 -

55
125

0.5859 -
70

125
0.4101= 0.1855

Information Gain

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right

† 

Entropy(S) = -p+ log2 p+ - p- log2 p- = -
50

125
log2

50
125

-
75

125
log2

75
125

= 0.6730

A2 : Entropy(left) = -
25
40

log2
25
40

-
15
40

log2
15
40

= 0.6616

A2 : Entropy(right) = -
25
85

log2
25
85

-
60
85

log2
60
85

= 0.6058

Gain(S,A2) = Entropy(S) -
Sv

S
Entropy(Sv )

v ŒValues(A )
Â = 0.6730 -

40
125

0.6616 -
85

125
0.6058 = 0.0493
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Information Gain

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

InfoGain = 0.1855                                InfoGain = 0.0493

Splitting Rules

• Problem with Node Purity and Information Gain:
– prefer attributes with many values

– extreme cases:
• Social Security Numbers

• patient ID’s

• integer/nominal attributes with many values (JulianDay)

+ – – + – + + –+. . .
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Splitting Rules

† 

GainRatio(S,A) =
InformationGain
CorrectionFactor

GainRatio(S,A) =

Entropy(S) -
Sv

S
Entropy(Sv )

v ŒValues(A )
Â

Sv

S
log2

Sv

Sv ŒValues(A )
Â

Gain_Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

0.00
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Splitting Rules

• GINI Index
–  node impurity weighted by node size

† 

GINInode (Node) =1- [pc ]2

c Œclasses
Â

GINIsplit (A) =
Sv

S
GINI(Nv )

v ŒValues(A )
Â

Experiment

• Randomly select # of training cases: 2-1000

• Randomly select fraction of +’s and -’s: [0.0,1.0]

• Randomly select attribute arity: 2-1000

• Randomly assign cases to branches!!!!!

• Compute IG, GR, GINI

. . .

741 cases: 309+, 432-

random arity
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GINI Score
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GINI Score vs. Gain_Ratio

Attribute Types

• Boolean

• Nominal

• Ordinal

• Integer

• Continuous
– Sort by value, then find best threshold for binary split

– Cluster into n intervals and do n-way split
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Overfitting

©Tom Mitchell, McGraw Hill, 1997

Machine Learning LAW #1

Because performance on data used for
training often looks optimistically good, 
you should NEVER use test data for any
part of learning.
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Pre-Pruning (Early Stopping)

• Evaluate splits before installing them:
– don’t install splits that don’t look worthwhile

– when no worthwhile splits to install, done

• Seems right, but:
– hard to properly evaluate split without seeing what

splits would follow it (use lookahead?)

– some attributes useful only in combination with other
attributes (e.g., diagonal decision surface)

– suppose no single split looks good at root node?

Post-Pruning

• Grow decision tree to full depth (no pre-pruning)

• Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

• Use train set, or an independent prune/test set, to
evaluate splits

• Stop pruning when remaining splits all appear to
be warranted

• Alternate approach: convert to rules, then prune
rules
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Converting Decision Trees to Rules

• each path from root to a leaf is a separate rule:

if  (fp=1 & ¬pc & primip & ¬fd & bw<3349)  =>  0,

if  (fp=2)  =>  1,

if  (fp=3)  =>  1.

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
|   previous_csection = 0: +767+81 (tree) 0.904 0.096 0
|   |   primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
|   |   |   fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
|   |   |   |   birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1 

Missing Attribute Values

• Many real-world data sets have missing values

• Will do lecture on missing values later in course

• Decision trees handle missing values easily/well.
Cases with missing attribute go down:
– majority case with full weight

– probabilistically chosen branch with full weight

– all branches with partial weight
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Greedy vs. Optimal

• Optimal
– Maximum expected accuracy (test set)
– Minimum size tree
– Minimum depth tree
– Fewest attributes tested
– Easiest to understand

• XOR problem
• Test order not always important for accuracy
• Sometimes random splits perform well (acts like KNN)

Decision Tree Predictions

• Classification into discrete classes

• Simple probability for each class

• Smoothed probability

• Probability with threshold(s)
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Performance Measures

• Accuracy
– High accuracy doesn’t mean good performance
– Accuracy can be misleading
– What threshold to use for accuracy?

• Root-Mean-Squared-Error

• Many other measures: ROC, Precision/Recall, …
• Will do lecture on performance measures later in course

† 

RMSE = (1- Pred_Probi(True_Classi)
i=1

# test

Â )2 # test

Machine Learning LAW #2

ALWAYS report baseline performance

(and how you defined it if not obvious).
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A Simple Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Predicting Probs

From Provost, Domingos pet-mlj 2002
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A Harder Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Prob Prediction

From Provost, Domingos pet-mlj 2002
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Predicting Probabilities with Trees

• Small Tree
– few leaves
– few discrete probabilities

• Large Tree
– many leaves
– few cases per leaf
– few discrete probabilities
– probability estimates based on small/noisy samples

• What to do?

PET: Probability Estimation Trees

• Smooth large trees
– correct estimates from small samples at leaves

• Average many trees
– average of many things each with a few discrete values

is more continuous

– averages improve quality of estimates

• Both
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Laplacian Smoothing

• Small leaf count: 4+, 1–
• Maximum Likelihood Estimate: k/N

– P(+) = 4/5 = 0.8;  P(–) = 1/5 = 0.2?

• Could easily be 3+, 2-  or even 2+, 3-,  or worse
• Laplacian Correction: (k+1)/(N+C)

– P(+) = (4+1)/(5+2) = 5/7 = 0.7143
– P(–) = (1+1)/(5+2) = 2/7 = 0.2857
– If N=0, P(+)=P(–) = 1/2
– Bias towards P(class) = 1/C

Bagging (Model Averaging)

• Train many trees with different random samples

• Average prediction from each tree
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Results

From Provost, Domingos pet-mlj 2002

C4.4: no pruning or collapsing
“L”: Laplacian Smoothing
“B”: bagging

Decision Tree Methods

• ID3:
– info gain
– full tree
– no pruning

• CART (Classification and Regression Trees):
– subsetting of discrete attributes (binary tree)
– GINI criterion
– “twoing” criterion for splitting continuous attributes

((Pleft*Pright)*SUMc((Pc(left)-Pc(right))2)
– stop splitting when split achieves no gain, or <= 5 cases
– cost-complexity pruning: minimize tree error + alpha*no-leaves

• C4:
– subsetting of discrete attributes (binary tree)
– gain ratio
– pessimistic pruning
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Decision Tree Methods

• MML:
– splitting criterion?
– large trees
– Bayesian smoothing

• SMM:
– MML tree after pruning
– much smaller trees
– Bayesian smoothing

• Bayes:
– Bayes splitting criterion
– full size tree
– Bayesian smoothing

Popular Decision Tree Packages

• ID3 (ID4, ID5, …) [Quinlan]
– research code with many variations introduced to test new ideas

• CART: Classification and Regression Trees [Breiman]
– best known package to people outside machine learning

– 1st chapter of CART book is a good introduction to basic issues

• C4.5 (C5.0) [Quinlan]
– most popular package in machine learning community

– both decision trees and rules

• IND (INDuce) [Buntine]
– decision trees for Bayesians (good at generating probabilities)
– available from NASA Ames for use in U.S.
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Advantages of Decision Trees

• TDIDT is relatively fast, even with large data sets (106)
and many attributes (103)
– advantage of recursive partitioning: only process all cases at root

• Can be converted to rules

• TDIDT does feature selection

• TDIDT often yields compact models (Occam’s Razor)

• Decision tree representation is understandable

• Small-medium size trees usually intelligible

Decision Trees are Intelligible
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Not ALL Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree

Weaknesses of Decision Trees

• Large or complex trees can be just as unintelligible as
other models

• Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes…

• Don’t handle real-valued parameters as well as Booleans
• If model depends on summing contribution of many

different attributes, DTs probably won’t do well
• DTs that look very different can be same/similar
• Usually poor for predicting continuous values (regression)
• Propositional (as opposed to 1st order)
• Recursive partitioning: run out of data fast as descend tree
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When to Use Decision Trees

• Regression doesn’t work
• Model intelligibility is important
• Problem does not depend on many features

– Modest subset of features contains relevant info
– not vision

• Speed of learning is important
• Missing values
• Linear combinations of features not critical
• Medium to large training sets

Current Research

• Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, …

• Handling real-valued attributes better

• Using DTs to explain other models such as neural nets

• Incorporating background knowledge

• TDIDT on really large datasets
– >> 106 training cases

– >> 103 attributes

• Better feature selection

• Unequal attribute costs

• Decision trees optimized for metrics other than accuracy
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Regression Trees vs. Classification

• Split criterion: minimize SSE at child nodes

• Tree yields discrete set of predictions

† 

SSE = (Truei
i=1

# test

Â - Predi)
2

Interpreting Results



32

Mean & Variance

† 

Mean(x) = x =
xi

i=1

N

Â
N

Variance(x) = S2 =

(x - xi)
2

i=1

N

Â
N

StdDev(x) = S = Var(x)

Confidence Interval of Mean

† 

StdErr(x ) = StdDev(x ) = S N

±1S ª 68%
±2S ª 95%
±3S ª 99%

Confidence _ Interval
95% : X -1.96S < true _ mean < X +1.96S
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Error Bars

• Typically 1 or 2 standard errors about mean

• Always specify what error bars are

• If 1 StdErr error bars do not overlap over regions of graph,
typically assume results significantly different in regions

† 

t =
X 1 - X 2

Spooled (1/N1) + (1/N2)

Spooled =
(N1 -1)S1

2 + (N2 -1)S2
2

N1 + N2 - 2

Hypothesis: Two Pops Have Same Mean

• t-test

• Given sample sizes, means, and variances, what
are chances of seeing this large a difference in
mean by chance?
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Hypothesis Testing continued (t-test)

• calculate t statistic (see previous slide)

• Find critical values of t in table for alpha = 0.05 (or 0.01,
0.001) with (N1+N2-2) degrees of freedom

• One-sided:
– testing one mean is larger than other

– E.g., for (alpha=0.05, N1=N2=10):  t = 1.734

• Two-sided:
– testing means are different

– E.g., for (alpha=0.05, N1=N2=10):  t = 2.101


