Unsupervised Learning and

Data Mining

Unsupervised Learning and
 Data Mining

C'lustering

Supervised Learning

- Decision trees
- Artificial neural nets
- K-nearest neighbor
- Support vectors
- Linear regression
- Logistic regression

Supervised Learning

- $\mathrm{F}(\mathrm{x})$: true function (usually not known)
- D: training sample drawn from $\mathrm{F}(\mathrm{x})$

$$
\begin{array}{ll}
\text { 57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 } & 0 \\
78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 & 1 \\
69, \mathrm{~F}, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
18, \mathrm{M}, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
54, \mathrm{~F}, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 & 1 \\
84, \mathrm{~F}, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
89, \mathrm{~F}, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0 & 1 \\
49, \mathrm{M}, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0 & 0 \\
40, \mathrm{M}, 205,0,115,90,37,18,0 & 0 \\
74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
77, \mathrm{~F}, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1 & 1
\end{array}
$$

Supervised Learning

- $\mathrm{F}(\mathrm{x})$: true function (usually not known)
- D: training sample drawn from $\mathrm{F}(\mathrm{x})$

$$
\begin{array}{lll}
57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 & 0 \\
78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 & 1 \\
69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 & 0 \\
54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 & 1
\end{array}
$$

- $\mathrm{G}(\mathrm{x})$: model learned from training sample D
$71, \mathrm{M}, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$

5)

- Goal: $\mathrm{E}<(\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}))^{2}>$ is small (near zero) for future samples drawn from $F(x)$

Supervised Learning

Well Defined Goal:

Learn $\mathrm{G}(\mathrm{x})$ that is a good approximation to $\mathrm{F}(\mathrm{x})$ from training sample D

Know How to Measure Error:

Accuracy, RMSE, ROC, Cross Entropy, ...

Clustering

$$
\neq
$$

Supervised Learning

Clustering

$=$

Unsupervised Learning

Supervised Learning

Train Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1, , , , 0,0,0,0,0,0,0,0	0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1
69,F, 180, $0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
18,M, $165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
54,F, $135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$	1
84,F, $210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
89,F, $135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$	1
	0
40,M,205,0,115,90,37,18,0	0
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$	1

Test Set:
$71, \mathrm{M}, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$

Un-Supervised Learning

Train Set:

> 57,M, 195,0,125,95,39,25,0,1,0,0,0, 1,0,0,0,0,0,0,0, 1, 1,0,0,0,0,0,0,0,0,0,0
> $78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ 69,F, $180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $18, \mathrm{M}, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ 54,F, $135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0$ 84,F,210,1,135, 105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 89,F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0 $49, \mathrm{M}, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0$ $40, \mathrm{M}, 205,0,115,90,37,18,0$ 74,M,250,1,130,100,38,26,1,1,0,0,0,1,1, ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 77,F,140,0,125,100,40,30, 1, 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1

Test Set:

Un-Supervised Learning

Train Set:

$$
\left.\begin{array}{l}
\text { Nel. } \\
\text { 57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0} \\
78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
\text { 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 } \\
18, \mathrm{M}, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
54, \mathrm{~F}, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 \\
84, \mathrm{~F}, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
89, \mathrm{~F}, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0 \\
\text { 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0} \\
40, \mathrm{M}, 205,0,115,90,37,18,0 \\
74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
\hline 77, \mathrm{~F}, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1
\end{array}\right)
$$

Tuat Set:

Un-Supervised Learning

Data Set:

$57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$
$78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$
18,M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
$54, \mathrm{~F}, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$
$84, \mathrm{~F}, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$
$40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$

Supervised vs. Unsupervised Learning

Supervised

- $\mathrm{y}=\mathrm{F}(\mathrm{x})$: true function
- D: labeled training set
- $\mathrm{D}:\left\{\mathrm{x}_{\mathrm{i},} \mathrm{y}_{\mathrm{i}}\right\}$
- $\mathrm{y}=\mathrm{G}(\mathrm{x})$: model trained to predict labels D
- Goal:

$$
\mathrm{E}<(\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}))^{2}>\approx 0
$$

- Well defined criteria: Accuracy, RMSE, ...

Unsupervised

- Generator: true model
- D: unlabeled data sample
- D: $\left\{\mathrm{X}_{\mathrm{i}}\right\}$
- Learn
?????????
- Goal:
??????????
- Well defined criteria:
?????????

What to Learn/Discover?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Goals and Performance Criteria?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Clustering

Clustering

- Given:
- Data Set D (training set)
- Similarity/distance metric/information
- Find:
- Partitioning of data
- Groups of similar/close items

Similarity?

- Groups of similar customers
- Similar demographics
- Similar buying behavior
- Similar health
- Similar products
- Similar cost
- Similar function
- Similar store
- Similarity usually is domain/problem specific

Types of Clustering

- Partitioning
- K-means clustering
- K-medoids clustering
- EM (expectation maximization) clustering
- Hierarchical
- Divisive clustering (top down)
- Agglomerative clustering (bottom up)
- Density-Based Methods
- Regions of dense points separated by sparser regions of relatively low density

Types of Clustering

- Hard Clustering:
- Each object is in one and only one cluster
- Soft Clustering:
- Each object has a probability of being in each cluster

Two Types of Data/Distance Info

- N -dim vector space representation and distance metric

$$
\begin{array}{ll}
\text { D1: } & 57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 \\
\text { D2: } & 78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
& \ldots \\
\text { Dn: } & 18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 \\
\text { Distance }(\mathrm{D} 1, \mathrm{D} 2)=\text { ??? }
\end{array}
$$

- Pairwise distances between points (no N -dim space)
+ Similarity/dissimilarity matrix (upper or lower diagonal)

$$
\begin{array}{lll}
\text { + Distance: } & 0=\text { near }, & \infty=\text { far } \\
\text { + Similarity: } & 0=\text { far }, & \infty=\text { near }
\end{array}
$$

Agglomerative Clustering

- Put each item in its own cluster (641 singletons)
- Find all pairwise distances between clusters
- Merge the two closest clusters
- Repeat until everything is in one cluster
- Hierarchical clustering
- Yields a clustering with each possible \# of clusters
- Greedy clustering: not optimal for any cluster size

Agglomerative Clustering of Proteins

Merging: Closest Clusters

- Nearest centroids
- Nearest medoids
- Nearest neighbors (shortest link)
- Nearest average distance (average link)
- Smallest greatest distance (maximum link)
- Domain specific similarity measure - word frequency, TFIDF, KL-divergence, ...
- Merge clusters that optimize criterion after merge - minimum mean_point happiness

Mean Distance Between Clusters

Minimum Distance Between Clusters

$$
\operatorname{Min}_{-} \operatorname{Dist}\left(c_{1}, c_{2}\right)=\underset{i \square c_{1}, j \square c_{2}}{\operatorname{MIN}}(\operatorname{Dist}(i, j))
$$

Mean Internal Distance in Cluster

Mean Point Happiness

$$
\square_{i j}=\square_{0}^{1} \text { when cluster }(i)=\operatorname{cluster}(j) \square
$$

Recursive Clusters

Recursive Clusters

Recursive Clusters

Recursive Clusters

Mean Point Happiness

Mean Point Happiness

Recursive Clusters + Random Noise

Recursive Clusters + Random Noise

Clustering Proteins

$$
\begin{aligned}
& -3383 \\
& \text { … } \\
& \text { … }\} \in \xi \%
\end{aligned}
$$

Distance Between Helices

- Vector representation of protein data in 3-D space that gives $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates of each atom in helix
- Use a program developed by chemists (fortran) to convert 3-D atom coordinates into average atomic distances in angstroms between aligned helices
- 641 helices $=641 * 640 / 2$

$$
=205,120 \text { pairwise distances }
$$

Agglomerative Clustering of Proteins

Agglomerative Clustering of Proteins

Cluster Purity vs. Cluster Size for PDB Structures

Agglomerative Clustering of Helix Pairs

Multidimensional Scaling of helix pairs by RMSD

Agglomerative Clustering

- Greedy clustering
- once points are merged, never separated
- suboptimal w.r.t. clustering criterion
- Combine greedy with iterative refinement
- post processing
- interleaved refinement

Agglomerative Clustering

- Computational Cost
- O($\left.\mathrm{N}^{2}\right)$ just to read/calculate pairwise distances
- N-1 merges to build complete hierarchy
+ scan pairwise distances to find closest
+ calculate pairwise distances between clusters
+ fewer clusters to scan as clusters get larger
- Overall O(N3) for simple implementations
- Improvements
- sampling
- dynamic sampling: add new points while merging
- tricks for updating pairwise distances

K-Means Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
- K-Means Algorithm:
-Initialize the k-means
+assign from randomly selected points
+randomly or equally distributed in space
-Assign each point to nearest mean
- Update means from assigned points
-Repeat until convergence

K-Means Clustering: Convergence

- Squared-Error Criterion

$$
\text { Squared_Error }=\square_{c} \prod_{i l e}(\operatorname{Dist}(i, \operatorname{mean}(c)))^{2}
$$

- Converged when SE criterion stops changing
- Increasing K reduces SE - can't determine K by finding minimum SE
- Instead, plot SE as function of K

K-Means Clustering

- Efficient
$-\mathrm{K} \ll \mathrm{N}$, so assigning points is $\mathrm{O}\left(\mathrm{K}^{*} \mathrm{~N}\right)<\mathrm{O}\left(\mathrm{N}^{2}\right)$
- updating means can be done during assignment
- usually \# of iterations $\ll \mathrm{N}$
- Overall $\mathrm{O}\left(\mathrm{N}^{*} \mathrm{~K}\right.$ *iterations) closer to $\mathrm{O}(\mathrm{N})$ than $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Gets stuck in local minima
- Sensitive to initialization
- Number of clusters must be pre-specified
- Requires vector space date to calculate means

Soft K-Means Clustering

- Instance of EM (Expectation Maximization)
- Like K-Means, except each point is assigned to each cluster with a probability
- Cluster means updated using weighted average
- Generalizes to Standard_Deviation/Covariance
- Works well if cluster models are known

Soft K-Means Clustering (EM)

-Initialize model parameters:

+ means
+ std_devs
$+\ldots$
-Assign points probabilistically to each cluster
- Update cluster parameters from weighted points
-Repeat until convergence to local minimum

What do we do if we can't calculate cluster means?

$$
\begin{array}{lr}
--1 & 2345678910 \\
1 & -d d d d d d d d d \\
2 & -d d d d d d d d \\
3 & -d d d d d d d \\
4 & -d d d d d d \\
5 & -d d d d d \\
6 & -d d d d \\
7 & -d d d \\
8 & -d \\
9 & -d
\end{array}
$$

K-Medoids Clustering

$\operatorname{Medoid}(c)=p t \square c$ s.t. $\operatorname{MIN}\left(\square_{i \square c} \operatorname{Dist}(i, p t)\right)$

K-Medoids Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
-
- Initialize k medoids
- pick points randomly
- Pick medoid and non-medoid point at random
- Evaluate quality of swap
- Mean point happiness
- Accept random swap if it improves cluster quality

Cost of K-Means Clustering

- n cases; d dimensions; k centers; i iterations
- compute distance each point to each center: $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~d}^{*} \mathrm{k}\right)$
- assign each of n cases to closest center: $O(n * k)$
- update centers (means) from assigned points: $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~d}^{*} \mathrm{k}\right)$
- repeat itimes until convergence
- overall: O(n\%d*k*i)
- much better than $\mathrm{O}\left(\mathrm{n}^{2}\right)-\mathrm{O}\left(\mathrm{n}^{3}\right)$ for HAC
- sensitive to initialization - run many times
- usually don't know k - run many times with different k
- requires many passes through data set

Graph-Based Clustering

Scaling Clustering to Big Databases

- K-means is still expensive: $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~d}^{*} \mathrm{k}^{*} \mathrm{I}\right)$
- Requires multiple passes through database
- Multiple scans may not be practical when:
- database doesn't fit in memory
- database is very large:
$+10^{4}-10^{9}$ (or more) records
$+>10^{2}$ attributes
- expensive join over distributed databases

Goals

- 1 scan of database
- early termination, on-line, anytime algorithm yields current best answer

Scale-Up Clustering?

- Large number of cases (big n)
- Large number of attributes (big d)
- Large number of clusters (big c)

