Multitask Learning

Motivating Example

- 4 tasks defined on eight bits $\mathrm{B}_{1}-\mathrm{B}_{8}$:

$$
\begin{aligned}
& \text { Task } 1=B_{1} \quad \operatorname{Parity}\left(B_{2} \square B_{6}\right) \\
& \text { Task } 2=\square B_{1} \quad \operatorname{Parity}\left(B_{2} \square B_{6}\right) \\
& \text { Task } 3=B_{1} \square \operatorname{Parity}\left(B_{2} \square B_{6}\right) \\
& \text { Task } 4=\square B_{1} \square \operatorname{Parity}\left(B_{2} \square B_{6}\right)
\end{aligned}
$$

Motivating Example: STL \& MTL

Motivating Example: Results

Motivating Example: Why?

extra tasks:

- add noise?
- change learning rate?
- reduce herd effect by differentiating hu's?
- use excess net capacity?
- . . .?
- similarity to main task helps hidden layer learn better representation?

Motivating Example: Why?

Autonomous Vehicle Navigation ANN

Multitask Learning for ALVINN

Single
Task Leaning

Steering Direction

MultiTask Learning

Problem 1: 1D-ALVINN

- simulator developed by Pomerleau
- main task: steering clirection
- 8 extra tasks:
- 1 or 2 lanes
- horizontal location of centerline
- horizontal location of road center, left edge, right edge
- intensity of centerline, road surface, burms

MTL vs. STL for ALVINN

TASK	STL 2hu	STL 4hu	STL 8hu	$\begin{aligned} & \text { STL } \\ & 16 \mathrm{hu} \end{aligned}$	$\begin{aligned} & \text { MTL } \\ & \text { 16hu } \end{aligned}$	\%Change Best	\%Change Average
1 or 2 Lanes	0.201	0.209	0.207	0.178	0.156	-12.40\%	-21.50\%
Left Edge	0.069	0.071	0.073	0.073	0.062	-10.10\%	-13.30\%
Right Edge	0.076	0.062	0.058	0.056	0.051	8.00	-19.00\%
Line Center	0.153	0.152	0.152	0.152	0.151	-0.70\%	-0.80\%
Road Center	0.038	0.037	0.039	0.042	0.034		-12.80\%
Road Greylevel	0.054	0.055	0.055	0.054	0.038		-30.30\%
Edge Greylevel	0.037	0.038	0.039	0.038	0.038	2.70\%	0.00\%
Line Greylevel	0.054	0.054	0.054	0.054	0.054	0.00\%	0.00\%
Steering	0.093	0.069	0.087	0.072	0.058	-15.90\%	-27.70\%

Problem 2: 1D-Doors

- color camera on Xavier robot
- main tasks: doortonob locstion and door type
- 8 extra tasks (training signals collected by mouse):
- doorway width
- location of doorway center
- location of left jamb, right jamb
- location of left and right edges of door

1D-Doors: Results

20% more accurate doorknob location

35\% more accurate doorway width

Predicting Pneumonia Risk

Pneumonia: Hospital Labs as Inputs

Predicting Pneumonia Risk

Pre-Hospital
Attributes

In-Hospital
Attributes

Pre-Hospital
Attributes

Pneumonia \#1: Medis

Pneumonia \#1: Results

Use imputed velues for missing lab tests exs extr inpus?

Pneumonia \#1: Feature Nets

Feature Nets vs. MTL

Pneumonia \#2: PORT

- 10X fewer cases (2286 patients)
- 10X more input features (200 feats)
- missing features (5\% overall, up to 50%)
- main task: dire outcome
- 30 extra tasks currently available
- dire outcome disjuncts (death, ICU, cardio, ...)
- length of stay in hospital
- cost of hospitalization
- etiology (gramnegative, grampositive, ...)
- ...

Pneumonia \#2: Results

Related?

- related \square helps learning (e.g., copy task)
- helps learning \square related (e.g., noise task)
- related \square correlated (e.g., $A+B, A-B)$

T'wo tasks are IMIT'LDP related if there is correlation (positive or negative) between the training signals of one and the hidden layer representation learned for the other

120 Synthetic Tasks

- backprop net not told how tasks are related, but ...
- 120 Peaks Fitunctions: A,B,C,D,E,F \square (0.0,1.0)
- P $001=$ If $(\mathrm{A}>0.5)$ Then B, Else C
- P $002=$ If $(A>0.5)$ Then B, Else D
- P $014=$ If $(\mathrm{A}>0.5)$ Then E, Else C
- P $024=$ If $(\mathrm{B}>0.5)$ Then A, Else F
- P $120=$ If $($ F $>0.5)$ Then E, Else D

Peaks Functions: Results

Peaks Functions: Results

MTL nets cluster tasks by function

Peaks Functions: Clustering

Heuristics: When to use MTL?

- using future to predict present
- time series
- disjunctive/conjunctive tasks
- multiple error metric
- quantized or stochastic tasks
- focus of attention
- sequential transfer
- different clatea clistributions
- hierarchical tasks
- some input features work better as outputs

Multiple Tasks Occur Naturally

- Mitchell's Calendar Apprentice (CAP)
- time-of-day (9:00am, 9:30am, ...)
- day-of-week (M, T, W, ...)
- duration (30min, 60min, ...)
- location (Tom's office, Dean's office, 5409, ...)

Using Future to Predict Present

- medical domains
- autonomous vehicles and robots
- time series
- stock market
- economic forecasting
- weather prediction
- spatial series
- many more

Disjunctive/Conjunctive Tasks

DireOutcome $=\mathrm{ICU} \mathrm{v}$ Complication v Death

Focus of Attention

- 1D-ALVINN:
- centerline
- left and right edges of road
removing centerlines from ID-AL VIVN ineages hurts I/TTL accuracy more then S'TL Eccuracy

Different Data Distributions

- Hospital 1: 50 cases, rural (Green Acres)
- Hospital 2: 500 cases, urban (Des Moines)
- Hospital 3: 1000 cases, elderly suburbs (Florida)
- Hospital 4: 5000 cases, young urban (LA,SF)

Some Inputs are Better as Outputs

- MainTask $=\operatorname{Sigmoid}(\mathrm{A})+\operatorname{Sigmoid}(\mathrm{B})$
- A, B $\square(\square 5.0,+5.0)$
- Inputs A and B coded via 10-bit binary code

Some Inputs are Better as Outputs

- MainTask $=\operatorname{Sigmoid(A)+Sigmoid(B)~}$
- Extra Features:
$-\mathrm{EF} 1=\operatorname{Sigmoid}(\mathrm{A})+\square *$ Noise
$-E F 2=\operatorname{Sigmoid}(B)+\square^{*}$ Noise
- where $\square \square(0.0,10.0)$, Noise $\square(-1.0,1.0)$

Inputs Better as Outputs: Results

Some Inputs Better as Outputs

Making MTL/Backprop Better

- Better training algorithm:
- learning rate optimization
- Better architectures:
- private hidden layers (overfitting in hidden unit space)
- using features as both inputs and outputs
- combining MTL with Feature Nets

Private Hidden Layers

- many tasks: need many hidden units
- many hidden units: "hidden unit selection problem"
- allow sharing, but without too many hidden units?

Features as Both Inputs \& Outputs

- some features help when used as inputs
- some of those also help when used as outputs
- get both benefits in one net?

MTL in K-Nearest Neighbor

- Most learning methods can MTL:
- shared representation
- combine performance of extra tasks
- control the effect of extra tasks
- MTL in K-Nearest Neighbor:
- shared rep: distance metric
- MTLPerf $=(1-\square) \square$ MainPerf $+\square$ ($\square \square$ ExtraPerf $)$

MTL/KNN for Pneumonia \#1

MTL/KNN for Pneumonia \#1

Psychological Plausibility

Related Work

- Sejnowski, Rosenberg [1986]: NETtalk
- Pratt, Mostow [1991-94]: serial transfer in bp nets
- Suddarth, Kergiosen [1990]: 1st MTL in bp nets
- Abu-Mostafa [1990-95]: catalytic hints
- Abu-Mostafa, Baxter [92,95]: transfer PAC models
- Dietterich, Hild, Bakiri [90,95]: bp vs. ID3
- Pomerleau, Baluja: other uses of hidden layers
- Munro [1996]: extra tasks to decorrelate experts
- Breiman [1995]: Curds \& Whey
- de Sa [1995]: minimizing disagreement
- Thrun, Mitchell [1994,96]: EBNN
- O'Sullivan, Mitchell [now]: EBNN+MTL+Robot

MTL vs. EBNN on Robot Problem

Parallel vs. Serial Transfer

- all information is in training signals
- information useful to other tasks can be lost training on tasks one at a time
- if we train on extra tasks first, how can we optimize what is learned to help the main task most
- tasks often benefit each other mutually
- parallel training allows related tasks to see the entire trajectory of other task learning

Summary/Contributions

- focus on main task improves performance
- >15 problem types where MTL is applicable:
- using the future to predict the present
- multiple metrics
- focus of attention
- different data populations
- using inputs as extra tasks
- ... (at least 10 more)
mos't real-world problerns fit one of these

Summary/Contributions

- applied MTL to a dozen problems, some not created for MTL
- MTL helps most of the time
- benefits range from 5\%-40\%
- ways to improve MTL/Backprop
- learning rate optimization
- private hidden layers
- MTL Feature Nets
- MTL nets do unsupervised clustering
- algs for MTL kNN and MTL Decision Trees

Future MTL Work

- output selection
- scale to 1000 's of extra tasks
- compare to Bayes Nets
- learning rate optimization

Theoretical Models of Parallel Xfer

- PAC models based on VC-dim or MDL
- unreasonable assumptions
+ fixed size hidden layers
+ all tasks generated by one hidden layer
+ backprop is ideal search procedure
- predictions do not fit observations
+ have to add hidden units
- main problems:
+ can't take behavior of backprop into account
+ not enough is known about capacity of backprop nets

Learning Rate Optimization

- optimize learning rates of extra tasks
- goal is maximize generalization of main task
- ignore performance of extra tasks
- expensive!
- performance on extra tasks improves 9% !

MTL Feature Nets

MTL at
Level 2

Regular Inputs

Acknowledgements

- advisors: Mitchell \& Simon
- committee: Pomerleau \& Dietterich
- CEHC: Cooper, Fine, Buchanan, et al.
- co-authors: Baluja, de Sa, Freitag
- robot Xavier: O’Sullivan, Simmons
- discussion: Fahlman, Moore, Touretzky
- funding: NSF, ARPA, DEC, CEHC, JPRC
- SCS/CMU: a great place to do research
- spouse: Diane

