Multitask Learning

Motivating Example

• 4 tasks defined on eight bits B_1 - B_8 :

Task 1 = $B_1 \vee Parity(B_2 - B_6)$ Task 2 = $\neg B_1 \vee Parity(B_2 - B_6)$ Task 3 = $B_1 \wedge Parity(B_2 - B_6)$ Task 4 = $\neg B_1 \wedge Parity(B_2 - B_6)$

Motivating Example: STL & MTL

Motivating Example: Results

Motivating Example: Why?

extra tasks:

- add noise?
- change learning rate?
- reduce herd effect by differentiating hu's?
- use excess net capacity?
- -...?
- similarity to main task helps hidden layer learn better representation?

Motivating Example: Why?

Autonomous Vehicle Navigation ANN

Multitask Learning for ALVINN

Single Task Leaning MultiTask Learning

Problem 1: 1D-ALVINN

- main task: steering direction
- 8 extra tasks:
 - -1 or 2 lanes
 - horizontal location of centerline
 - horizontal location of road center, left edge, right edge
 - intensity of centerline, road surface, burms

MTL vs. STL for ALVINN

TASK	STL 2hu	STL 4hu	STL 8hu	STL 16hu	MTL 16hu	%Change Best	%Change Average
1 or 2 Lanes	0.201	0.209	0.207	<mark>0.178</mark>	<mark>0.156</mark>		-21.50%
Left Edge	<mark>0.069</mark>	0.071	0.073	0.073	<mark>0.062</mark>		-13.30%
Right Edge	0.076	0.062	0.058	<mark>0.056</mark>	<mark>0.051</mark>		-19.00%
Line Center	0.153	0.152	0.152	<mark>0.152</mark>	<mark>0.151</mark>	-0.70%	-0.80%
Road Center	0.038	<mark>0.037</mark>	0.039	0.042	<mark>0.034</mark>		-12.80%
Road Greylevel	<mark>0.054</mark>	0.055	0.055	0.054	<mark>0.038</mark>		-30.30%
Edge Greylevel	<mark>0.037</mark>	0.038	0.039	0.038	0.038	2.70%	0.00%
Line Greylevel	0.054	0.054	<mark>0.054</mark>	0.054	<mark>0.054</mark>	0.00%	0.00%
Steering	0.093	<mark>0.069</mark>	0.087	0.072	0.058	-15.90%	-27.70%

Problem 2: 1D-Doors

- color camera on Xavier robot
- main tasks: doorknob location and door type
- 8 extra tasks (training signals collected by mouse):
 - doorway width
 - location of doorway center
 - location of left jamb, right jamb
 - location of left and right edges of door

1D-Doors: Results

20% more accurate doorknob location

35% more accurate doorway width

Predicting Pneumonia Risk

Pneumonia: Hospital Labs as Inputs

Predicting Pneumonia Risk

Pneumonia #1: Medis

Pneumonia #1: Results

Use imputed values for missing lab tests as extra *inputs*?

Pneumonia #1: Feature Nets

Feature Nets vs. MTL

Pneumonia #2: PORT

- 10X fewer cases (2286 patients)
- 10X more input features (200 feats)
- missing features (5% overall, up to 50%)
- main task: dire outcome
- 30 extra tasks currently available
 - dire outcome disjuncts (death, ICU, cardio, ...)
 - length of stay in hospital
 - cost of hospitalization

. . .

- etiology (gramnegative, grampositive, ...)

Pneumonia #2: Results

Related?

- related \neq helps learning (e.g., copy task)
- helps learning \Rightarrow related (e.g., noise task)
- related \neq correlated (e.g., A+B, A-B)

Two tasks are MTL/BP related if there is correlation (positive or negative) between the training signals of one and the hidden layer representation learned for the other

120 Synthetic Tasks

- backprop net not told how tasks are related, but ...
- 120 Peaks Functions: $A,B,C,D,E,F \in (0.0,1.0)$
 - P 001 = If (A > 0.5) Then B, Else C
 - P 002 = If (A > 0.5) Then B, Else D
 - P 014 = If (A > 0.5) Then E, Else C
 - P 024 = If (B > 0.5) Then A, Else F
 - P 120 = If (F > 0.5) Then E, Else D

Peaks Functions: Results

Peaks Functions: Results

courtesy Joseph O'Sullivan

MTL nets cluster tasks by *function*

Peaks Functions: Clustering

Heuristics: When to use MTL?

- using future to predict present
- time series
- disjunctive/conjunctive tasks
- multiple error metric
- quantized or stochastic tasks
- focus of attention
- sequential transfer
- different data distributions
- hierarchical tasks
- some input features work better as outputs

Multiple Tasks Occur Naturally

Mitchell's Calendar Apprentice (CAP)
 – time-of-day (9:00am, 9:30am, ...)

- day-of-week (M, T, W, ...)
- duration (30min, 60min, ...)
- location (Tom's office, Dean's office, 5409, ...)

Using Future to Predict Present

- medical domains
- autonomous vehicles and robots
- time series
 - stock market
 - economic forecasting
 - weather prediction
 - spatial series
- many more

Disjunctive/Conjunctive Tasks **DireOutcome** = ICU v Complication v Death PUTS

Focus of Attention

• 1D-ALVINN:

- centerline
- left and right edges of road

removing centerlines from 1D-ALVINN images hurts MTL accuracy more than STL accuracy

Different Data Distributions

- Hospital 1: 50 cases, rural (Green Acres)
- Hospital 2: 500 cases, urban (Des Moines)
- Hospital 3: 1000 cases, elderly suburbs (Florida)
- Hospital 4: 5000 cases, young urban (LA,SF)

Some Inputs are Better as Outputs

- MainTask = Sigmoid(A)+Sigmoid(B)
- A, B \in (-5.0, +5.0)
- Inputs A and B coded via 10-bit binary code

Some Inputs are Better as Outputs

- MainTask = Sigmoid(A)+Sigmoid(B)
- Extra Features:
 - EF1 = Sigmoid(A) + λ * Noise
 - EF2 = Sigmoid(B) + λ * Noise
 - where $\lambda \in (0.0, 10.0)$, Noise $\in (-1.0, 1.0)$

Inputs Better as Outputs: Results

Some Inputs Better as Outputs

Making MTL/Backprop Better

- Better training algorithm:
 - learning rate optimization
- Better architectures:
 - private hidden layers (overfitting in hidden unit space)
 - using features as both inputs and outputs
 - combining MTL with Feature Nets

Private Hidden Layers

- many tasks: need many hidden units
- many hidden units: "hidden unit selection problem"
- allow sharing, but without too many hidden units?

Features as Both Inputs & Outputs

- some features help when used as inputs
- some of those also help when used as outputs
- get both benefits in one net?

MTL in K-Nearest Neighbor

- Most learning methods can MTL:

 shared representation
 combine performance of extra tasks
 control the effect of extra tasks
- MTL in K-Nearest Neighbor:

 shared rep: distance metric
 MTLPerf = (1-λ)*MainPerf + Σ (λ*ExtraPerf)

MTL/KNN for Pneumonia #1

MTL/KNN for Pneumonia #1

Psychological Plausibility

Related Work

- Sejnowski, Rosenberg [1986]: NETtalk
- Pratt, Mostow [1991-94]: serial transfer in bp nets
- Suddarth, Kergiosen [1990]: 1st MTL in bp nets
- Abu-Mostafa [1990-95]: catalytic hints
- Abu-Mostafa, Baxter [92,95]: transfer PAC models
- Dietterich, Hild, Bakiri [90,95]: bp vs. ID3
- Pomerleau, Baluja: other uses of hidden layers
- Munro [1996]: extra tasks to decorrelate experts
- Breiman [1995]: Curds & Whey
- de Sa [1995]: minimizing disagreement
- Thrun, Mitchell [1994,96]: EBNN
- O'Sullivan, Mitchell [now]: EBNN+MTL+Robot

MTL vs. EBNN on Robot Problem

courtesy Joseph O'Sullivan

Parallel vs. Serial Transfer

- all information is in training signals
- information useful to other tasks can be lost training on tasks one at a time
- if we train on extra tasks first, how can we optimize what is learned to help the main task most
- tasks often benefit each other mutually
- parallel training allows related tasks to see the entire trajectory of other task learning

Summary/Contributions

- focus on main task improves performance
- >15 problem types where MTL is applicable:
 - using the future to predict the present
 - multiple metrics
 - focus of attention
 - different data populations
 - using inputs as extra tasks
 - ... (at least 10 more)

most real-world problems fit one of these

Summary/Contributions

- applied MTL to a dozen problems, some not created for MTL
 - MTL helps most of the time
 - benefits range from 5%-40%
- ways to improve MTL/Backprop
 - learning rate optimization
 - private hidden layers
 - MTL Feature Nets
- MTL nets do unsupervised clustering
- algs for MTL kNN and MTL Decision Trees

Future MTL Work

- output selection
- scale to 1000's of extra tasks
- compare to Bayes Nets
- learning rate optimization

Theoretical Models of Parallel Xfer

- PAC models based on VC-dim or MDL
 - unreasonable assumptions
 - + fixed size hidden layers
 - + all tasks generated by one hidden layer
 - + backprop is ideal search procedure
 - predictions do not fit observations
 - + have to add hidden units
 - main problems:
 - + can't take behavior of backprop into account
 - + not enough is known about capacity of backprop nets

Learning Rate Optimization

- optimize learning rates of extra tasks
- goal is maximize generalization of main task
- ignore performance of extra tasks
- expensive!

• performance on extra tasks improves 9%!

MTL Feature Nets

Acknowledgements

- advisors: Mitchell & Simon
- committee: Pomerleau & Dietterich
- CEHC: Cooper, Fine, Buchanan, et al.
- co-authors: Baluja, de Sa, Freitag
- robot Xavier: O'Sullivan, Simmons
- discussion: Fahlman, Moore, Touretzky
- funding: NSF, ARPA, DEC, CEHC, JPRC
- SCS/CMU: a great place to do research
- spouse: Diane