Decision trees

Artificial neural nets

K-nearest neighbor

Support vectors

Linear regression

Logistic regression

• • •

y=F(x): true function (usually not known)
D: training sample drawn from F(x)

Train Set:

Test Set:

F(x): true function (usually not known)

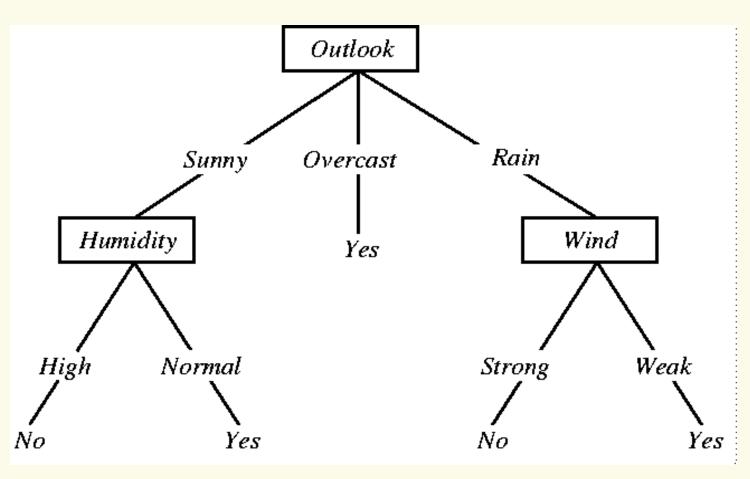
D: training sample drawn from F(x)

G(x): model learned from training sample D

Goal: $E < (F(x)-G(x))^2 > is small (near zero) for future test samples drawn from <math>F(x)$

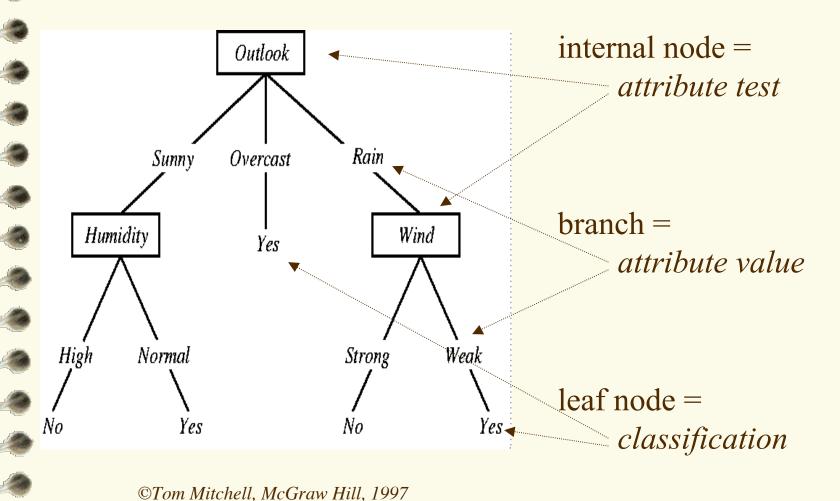
Decision Trees

A Simple Decision Tree

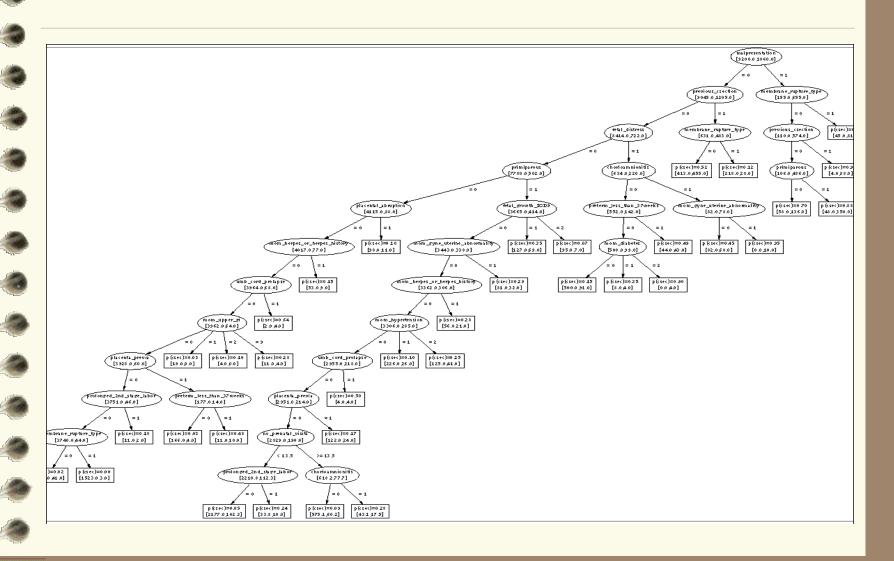


©Tom Mitchell, McGraw Hill, 1997

Representation



A Real Decision Tree



A Real Decision Tree

Decision Tree Trained on 1000 Patients:

```
#833+167 (tree) 0.8327 0.1673 0

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| primiparous = 0: +399+13 (tree) 0.9673 0.03269 0

| primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0

| | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0

| | birth_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0

| fetal_distress = 1: +34+21 (tree) 0.6161 0.3839 0

| previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0

fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1
```

Real Data: C-Section Prediction

Demo summary:

Fast

Reasonably intelligible

Larger training sample => larger tree

Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

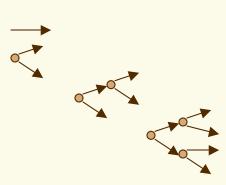
Search Space

all possible sequences of all possible tests very large search space, e.g., if N binary attributes:

- 1 null tree
- N trees with 1 (root) test
- N*(N-1) trees with 2 tests
- -N*(N-1)*(N-1) trees with 3 tests
- $\approx N^4$ trees with 4 tests
- maximum depth is N

size of search space is exponential in number of attributes

- too big to search exhaustively
- exhaustive search probably would overfit data (too many models)
- so what do we do instead?



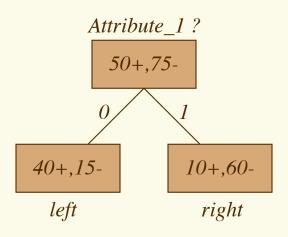
Top-Down Induction of Decision Trees

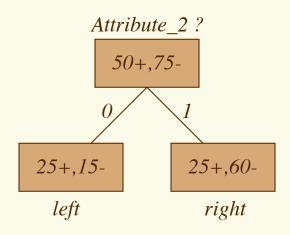
TDIDT

a.k.a. Recursive Partitioning

- find "best" attribute test to install at root
- split data on root test
- find "best" attribute tests to install at each new node
- split data on new tests
- repeat until:
 - all nodes are pure
 - all nodes contain fewer than k cases
 - distributions at nodes indistinguishable from chance
 - tree reaches predetermined max depth
 - no more attributes to test

Find "Best" Split?





$$\begin{bmatrix} \# Class_1 \\ \# Class_1 + \# Class_2 \end{bmatrix} \begin{bmatrix} \# Class_2 \\ \# Class_1 + \# Class_2 \end{bmatrix}_{rightnode}$$

0.6234

0.4412

Splitting Rules

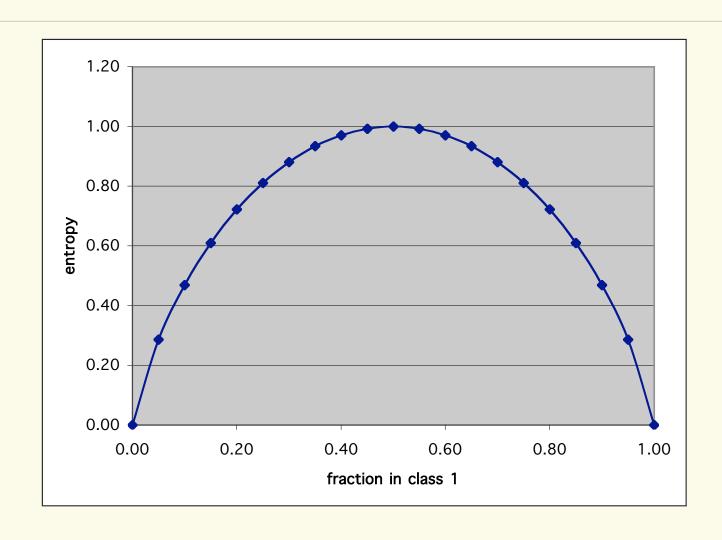
Information Gain = reduction in entropy due to splitting on an attribute

Entropy = expected number of bits needed to encode the class of a randomly drawn + or – example using the optimal info-theory coding

$$Entropy = -p_{+} \log_2 p_{+} - p_{-} \log_2 p_{-}$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{\left|S_{v}\right|}{\left|S\right|} Entropy(S_{v})$$

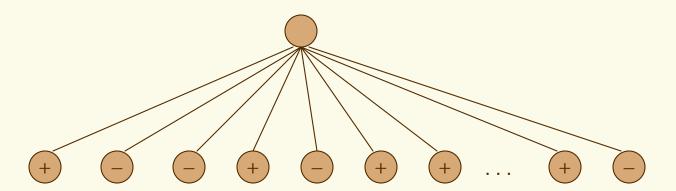
Entropy



Splitting Rules

Problem with Node Purity and Information Gain:

- prefer attributes with many values
- extreme cases:
 - Social Security Numbers
 - patient ID's
 - integer/nominal attributes with many values (JulianDay)



Splitting Rules

$$GainRatio(S, A) = \frac{Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)}{\sum_{v \in Values(A)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}}$$

Gain_Ratio Correction Factor

Splitting Rules

GINI Index

Measure of node impurity

$$GINI_{node}(Node) = 1 - \sum_{c \in classes} [p_c]^2$$

$$GINI_{split}(A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} GINI(N_v)$$

Experiment

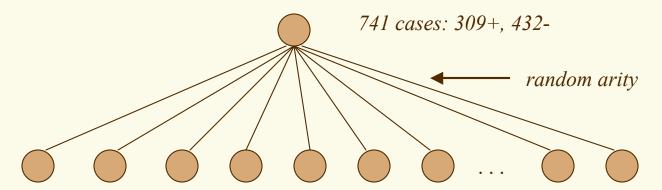
Randomly select # of cases: 2-1000

Randomly select fraction of +'s and -'s

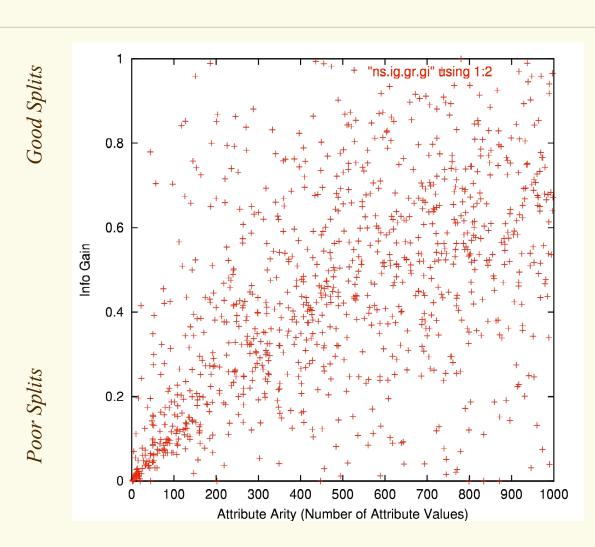
Randomly select attribute arity: 2-1000

Randomly assign cases to branches!!!!!

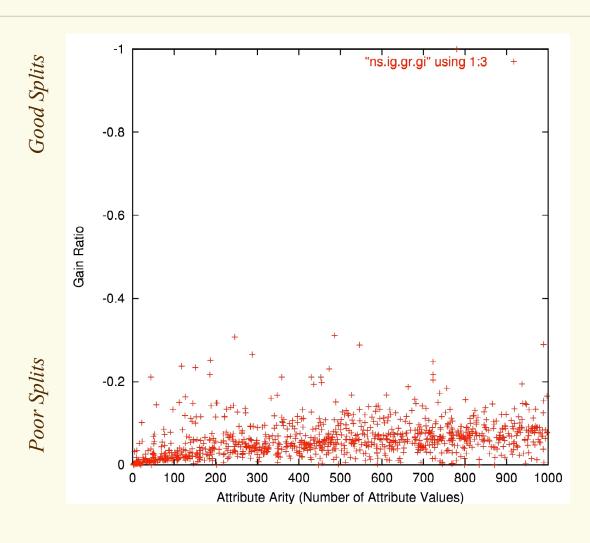
Compute IG, GR, GINI



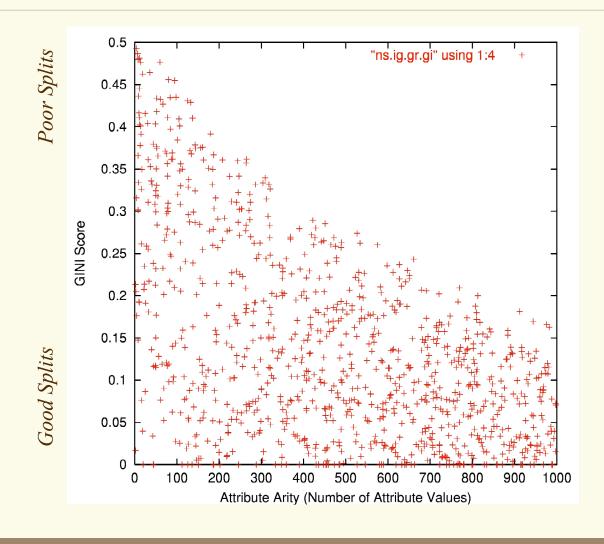
Info_Gain



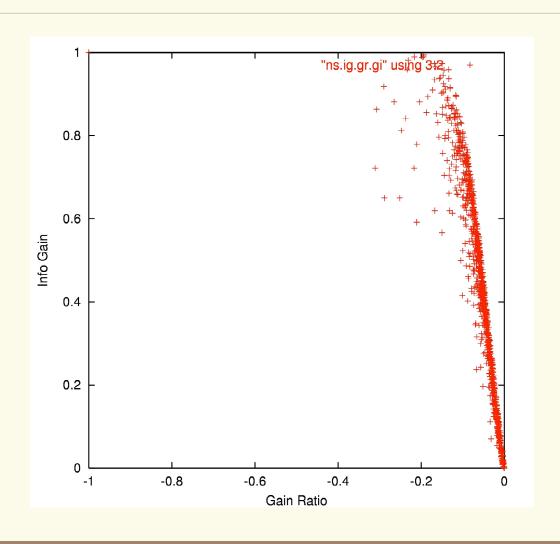
Gain_Ratio



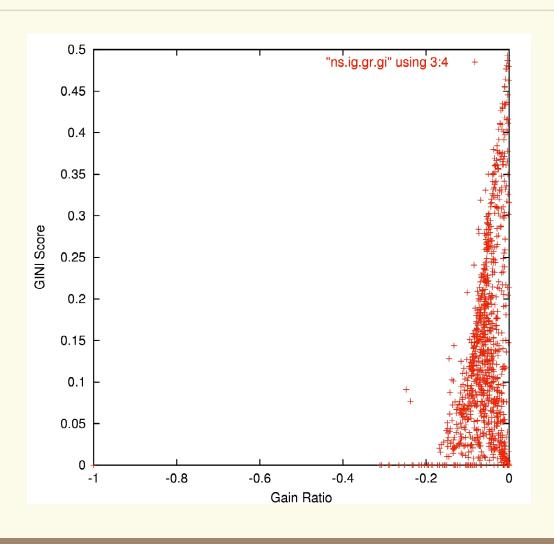
GINI Score



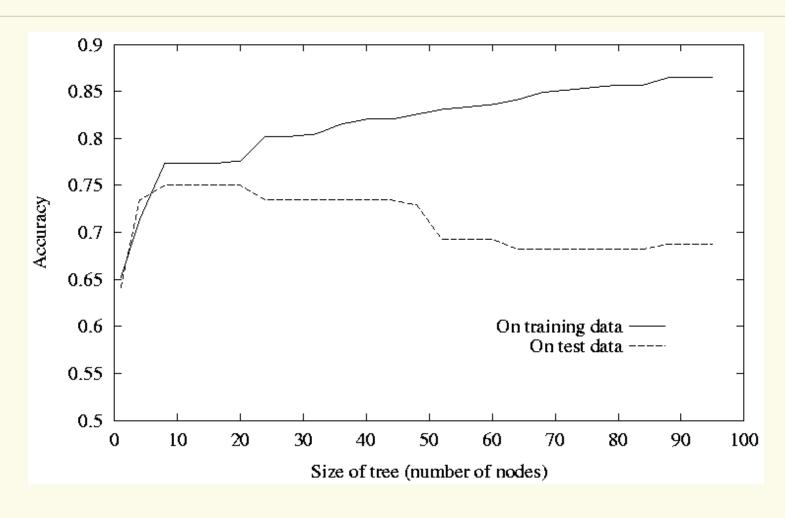
Info_Gain vs. Gain_Ratio



GINI Score vs. Gain_Ratio



Overfitting



©Tom Mitchell, McGraw Hill, 1997

Pre-Pruning (Early Stopping)

Evaluate splits before installing them:

- don't install splits that don't look worthwhile
- when no worthwhile splits to install, done

Seems right, but:

- hard to properly evaluate split without seeing what splits would follow it (use lookahead?)
- some attributes useful only in combination with other attributes
- suppose no single split looks good at root node?

Post-Pruning

Grow decision tree to full depth (no pre-pruning)

Prune-back full tree by eliminating splits that do not appear to be warranted statistically

Use train set, or an independent prune/test set, to evaluate splits

Stop pruning when remaining splits all appear to be warranted

Alternate approach: convert to rules, then prune rules

Greedy vs. Optimal

Optimal

- Maximum expected accuracy (test set)
- Minimum size tree
- Minimum depth tree
- Fewest attributes tested
- Easiest to understand

Test order not always important for accuracy Sometimes random splits perform well

Decision Tree Predictions

Classification

Simple probability

Smoothed probability

Probability with threshold(s)

Performance Measures

Accuracy

- High accuracy doesn't mean good performance
- Accuracy can be misleading
- What threshold to use for accuracy?

Root-Mean-Squared-Error

RMSE =
$$\sqrt{\sum_{i=1}^{\# test}} (1 - \text{Pred_Prob}_i(\text{True_Class}_i))^2$$

Other measures: ROC, Precision/Recall, ...

Attribute Types

Boolean

Nominal

Ordinal

Integer

Continuous

- Sort by value, then find best threshold for binary split
- Cluster into n intervals and do n-way split

Missing Attribute Values

Some data sets have many missing values

Regression Trees vs. Classification

Split criterion: minimize RMSE at node Tree yields discrete set of predictions

$$RMSE = \sum_{i=1}^{\# test} (True_i - Pred_i)^2$$

Converting Decision Trees to Rules

each path from root to a leaf is a separate rule:

```
fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0

| | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0

fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

if (fp=1 \& \neg pc \& primip \& \neg fd \& bw < 3349) => 0,

if (fp=2) => 1,

if (fp=3) => 1.
```

Advantages of Decision Trees

TDIDT is relatively fast, even with large data sets (10^6) and many attributes (10^3)

advantage of recursive partitioning: only process all cases at root

Small-medium size trees usually intelligible

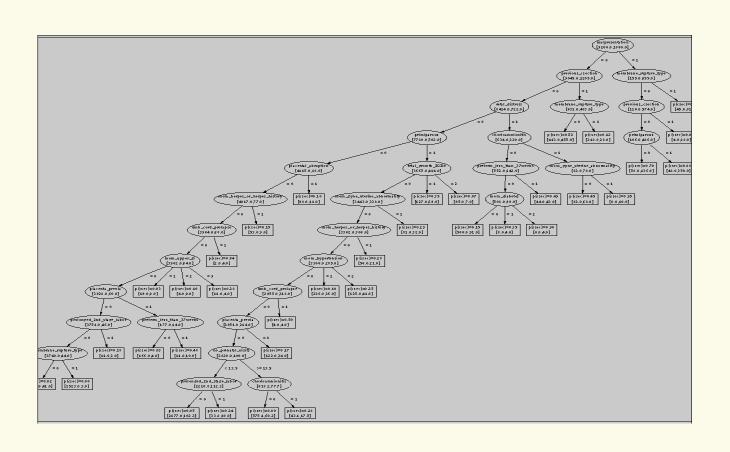
Can be converted to rules

TDIDT does feature selection

TDIDT often yields compact models (Occam's Razor)

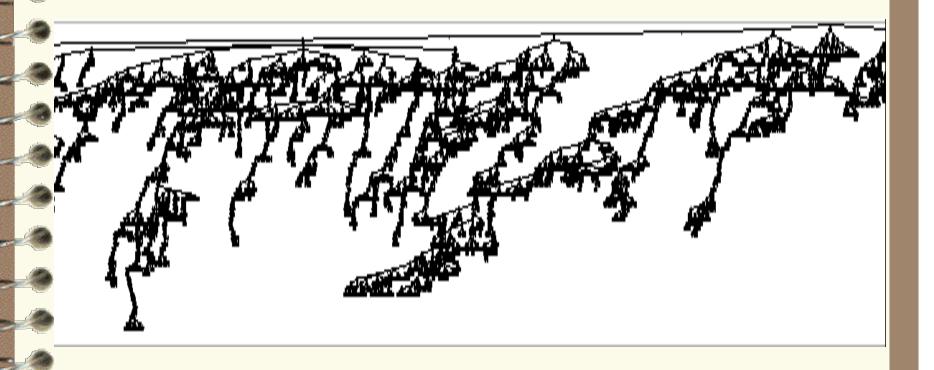
Decision tree representation is understandable

Decision Trees are Intelligible



Not ALL Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree



Predicting Probabilities with Trees

Small Tree

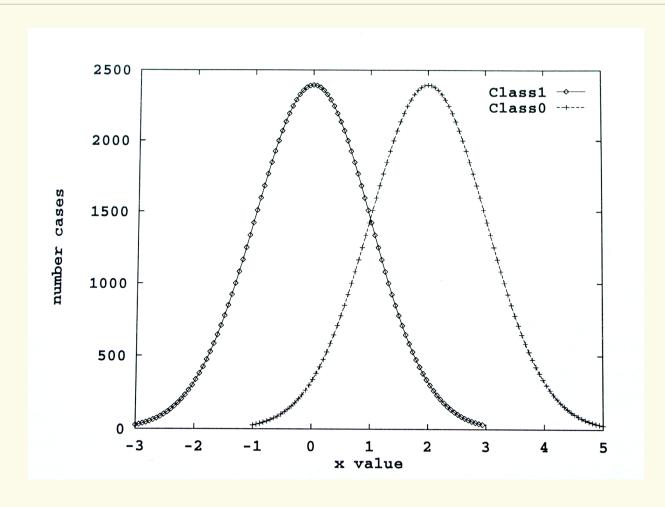
- few leafs
- few discrete probabilities

Large Tree

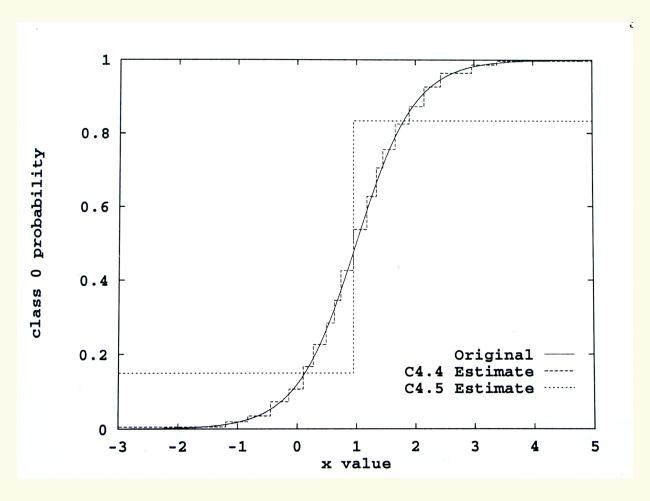
- many leafs
- few cases per leaf
- few discrete probabilities
- probability estimates based on small/noisy samples

What to do?

A Simple Two-Class Problem

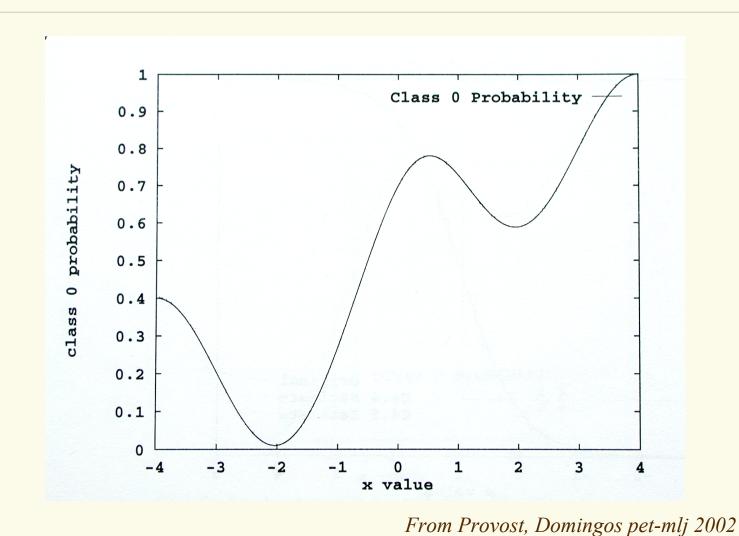


Classification vs. Predicting Probs

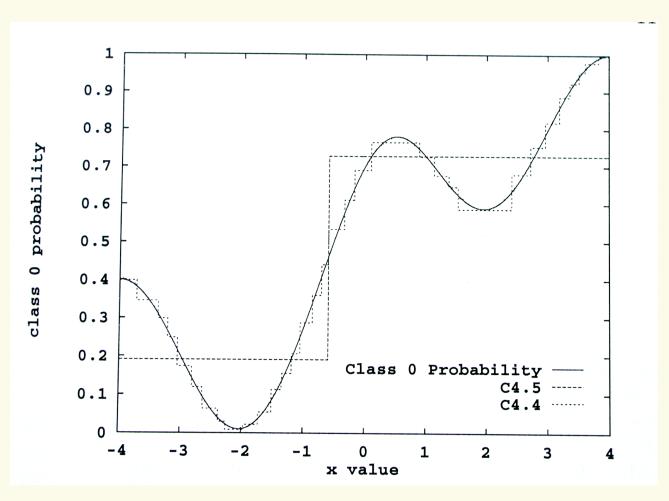


From Provost, Domingos pet-mlj 2002

A Harder Two-Class Problem



Classification vs. Prob Prediction



From Provost, Domingos pet-mlj 2002

PET: Probability Estimation Trees

Smooth large trees

correct estimates from small samples at leafs

Average many trees

- average of many things each with a few discrete values is more continuous
- averages improve quality of estimates

Both

Laplacian Smoothing

Small leaf count: 4+, 1–

Maximum Likelihood Estimate: k/N

$$-P(+) = 4/5 = 0.8; P(-) = 1/5 = 0.2?$$

Could easily be 3+, 2- or even 2+, 3-, or worse

Laplacian Correction: (k+1)/(N+C)

$$-P(+) = (4+1)/(5+2) = 5/7 = 0.7143$$

$$-P(-) = (1+1)/(5+2) = 2/7 = 0.2857$$

- If
$$N=0$$
, $P(+)=P(-)=1/2$

- Bias towards P(class) = 1/C

Bagging (Model Averaging)

Train many trees with different random samples Average prediction from each tree

Results

Table II. Summary of experimental results: AUC comparisons.

Systems	Wins-Ties-Losses	Avg. diff. (%)	Sign test	Wilcoxon test
C4.4 vs. C4.5	18 - 1 - 6	2.0	1.0	0.3
C4.4 vs. C4.5-L	13 - 3 - 9	0.2	30.0	30.0
C4.5-L vs. C4.5	21 - 2 - 2	1.7	0.1	0.1
C4.5-B vs. C4.5	24 - 1 - 0	7.3	0.1	0.1
C4.4-B vs. C4.4	23 - 2 - 0	5.3	0.1	0.1
C4.4-B vs. C4.5-B	11 - 5 - 9	-0.1	45.0	50.0

C4.4: no pruning or collapsing

"L": Laplacian Smoothing

"B": bagging

Weaknesses of Decision Trees

Large or complex trees can be just as unintelligible as other models

Trees don't easily represent some basic concepts such as M-of-N, parity, non-axis-aligned classes...

Don't hande real-valued parameters as well as Booleans

If model depends on summing contribution of many different attributes, DTs probably won't do well

DTs that look very different can be same/similar

Usually poor for predicting continuous values (regression)

Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree

Popular Decision Tree Packages

ID3 (ID4, ID5, ...) [Quinlan]

research code with many variations introduced to test new ideas

CART: Classification and Regression Trees [Breiman]

- best known package to people outside machine learning
- 1st chapter of CART book is a good introduction to basic issues

C4.5 (C5.0) [Quinlan]

- most popular package in machine learning community
- both decision trees and rules

IND (INDuce) [Buntine]

- decision trees for Bayesians (good at generating probabilities)
- available from NASA Ames for use in U.S.

When to Use Decision Trees

Regression doesn't work

Model intelligibility is important

Problem does not depend on many features

- Modest subset of features contains relevant info
- not vision

Speed of learning is important

Linear combinations of features not critical

Medium to large training sets

Current Research

Increasing representational power to include M-of-N splits, non-axis-parallel splits, perceptron-like splits, ...

Handling real-valued attributes better

Using DTs to explain other models such as neural nets

Incorporating background knowledge

TDIDT on really large datasets

- $>> 10^6$ training cases
- $>> 10^3$ attributes

Better feature selection

Unequal attribute costs

Decision trees optimized for metrics other than accuracy