[ o Supervised Learning

Decision trees
Artificial neural nets
K-nearest neighbor
Support vectors
Linear regression

Logistic regression




Supervised Learning

* y=F(x): true function (usually not known)
* D: training sample drawn from F(x)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78.M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74.M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1




Supervised Learning

Train Set:

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74.M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1

Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0




Supervised Learning

F(x): true function (usually not known)
D: training sample drawn from F(X)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78.M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0
1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0
0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 1

G(x): model learned from training sample D
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ?

Goal: E<(F(x)-G(x))*> is small (near zero) for
future test samples drawn from F(X)
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A Simple Decision Tree
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A Real Decision Tree
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¥ A Real Decision Tree

Decision Tree Trained on 1000 Patients:

+833+167 (tree) 0.8327 0.1673 0

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0
previous_csection = 0: +767+81 (tree) 0.904 0.096 0
primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

fetal distress = 0: +334+47 (tree) 0.8757 0.1243 0

| birth weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
| birth weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
fetal distress = 1: +34+21 (tree) 0.6161 0.3839 0
previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0

fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1




© Real Data: C-Section Prediction

Demo summary:

Fast

Reasonably intelligible

Larger training sample => larger tree
Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell




Search Space

all possible sequences of all possible tests

very large search space, e.g., if N binary attributes:
1 null tree
N trees with 1 (root) test .<:
N*(N-1) trees with 2 tests
N*(N-1)*(N-1) trees with 3 tests
~ N* trees with 4 tests
maximum depth is N

size of search space 1s exponential in number of attributes
— too big to search exhaustively

— exhaustive search probably would overfit data (too many models)
— so what do we do instead?




Top-Down Induction of Decision Trees

- TDIDT
* a.k.a. Recursive Partitioning
— find “best” attribute test to install at root
split data on root test
find “best” attribute tests to install at each new node
split data on new tests

— repeat until:
+ all nodes are pure
+ all nodes contain fewer than k cases
« distributions at nodes indistinguishable from chance
* tree reaches predetermined max depth
* no more attributes to test




® Find “Best” Split?

Attribute 1 ? Attribute 2 ?

right left

| # Class ] . | # Class, |
# Class+#Class, J [# Class+# Class, J

leftnodel.

rightnode

0.6234 0.4412




[® Splitting Rules

#® - Information Gain = reduction in entropy due to
| splitting on an attribute

> . Entropy = expected number of bits needed to
& encode the class of a randomly drawn + or —
example using the optimal info-theory coding

Entropy = -p_ log, p, — p_log, p_

s,
Gain(S,A) = Entropy(S) - E —— Entropy( S, )

vEValues(A) |SI




fraction in class 1
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Splitting Rules

* Problem with Node Purity and Information Gain:
— prefer attributes with many values

— extreme cases.
* Social Security Numbers
* patient ID’s

* integer/nominal attributes with many values (JulianDay)




Sphttmg Rules

Entropy(S) - E Entropy(S )

E —log,

_ ®GainRatio(S,A) =




Gain Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

/
/
/
/

Correction Factor

20 30
Number of Splits




[® Splitting Rules

'« GINI Index

— Measure of node impurity

GINI,,,,(Node)=1- ¥ [p,T’

cEclasses

GINI

split

A= > S, GINI(N.)

vEValues(A) ‘S



|« Experiment
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Info Gain vs. Gain Ratio

Info Gain
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Gain Ratio




R i o Sl
+ Giac i

Gain Ratio

1 1
Y] N
A o
=]

9J03S INIO

o
g
av!
a2
=
S
O
N
>
O
o~
Q
O
N
—
7z
S
O

I




Overfitting

0.9

g
o
=
g
-1,

On training data ——
On test data

30 40 50 60 70 80 90

Size of tree (number of nodes)

©Tom Mitchell, McGraw Hill, 1997




| o Pre-Pruning (Early Stopping)

® - Evaluate splits before installing them:
| — don’t install splits that don’t look worthwhile
— when no worthwhile splits to install, done

a ° Scems right, but:

— hard to properly evaluate split without seeing what
splits would follow 1t (use lookahead?)

— some attributes useful only in combination with other
attributes

— suppose no single split looks good at root node?




[3 Post-Pruning

Grow decision tree to full depth (no pre-pruning)

Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

Use train set, or an independent prune/test set, to
evaluate splits

Stop pruning when remaining splits all appear to
be warranted

Alternate approach: convert to rules, then prune
rules




Greedy vs. Optimal

* Optimal
Maximum expected accuracy (test set)
Minimum size tree
Minimum depth tree
— Fewest attributes tested

— Easiest to understand

® - Test order not always important for accuracy

#® - Sometimes random splits perform well




[Z Decision Tree Predictions

Classification

Simple probability
Smoothed probability
Probability with threshold(s)




Performance Measures

=® - Accuracy
e — High accuracy doesn’t mean good performance
— Accuracy can be misleading
— What threshold to use for accuracy?

* Root-Mean-Squared-Error

#test

E (1-Pred_Prob, (True_Classi))2




[ o Attribute Types

Boolean
Nominal
Ordinal
Integer

Continuous

— Sort by value, then find best threshold for binary split
— Cluster 1nto n intervals and do n-way split




[2 Missing Attribute Values

= ® - Some data sets have many missing values




| . Regression Trees vs. Classification

= ® - Split criterion: minimize RMSE at node

® . Tree yields discrete set of predictions

# test

RMSE = E (True, — Predi)2

=1




o Converting Decision Trees to Rules

* each path from root to a leaf 1s a separate rule:

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0
previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | fetal distress =0: +334+47 (tree) 0.8757 0.1243 0

| | | birth weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1

if (lp=1 & —pc & primip & —fd & bw<3349) => 0,
if (ip=2) => 1,
if (fp=3) => 1.




[ . Advantages of Decision Trees

TDIDT is relatively fast, even with large data sets (10°)
and many attributes (10°)
— advantage of recursive partitioning: only process all cases at root

Small-medium size trees usually intelligible

Can be converted to rules

TDIDT does feature selection

TDIDT often yields compact models (Occam’s Razor)
Decision tree representation is understandable
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o Not ALL Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree

11'[1.—__ i 4
r'l'"‘v “'d#"iT'w #,'
1, o

3 -




/'

Predlctmg Probabilities with Trees

® - Small Tree
: — few leafs
— few discrete probabilities

* Large Tree
— many leafs
— few cases per leaf
— few discrete probabilities
— probability estimates based on small/noisy samples

* What to do?




)
: A Simple Two-Class Problem
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)
:' A Harder Two-Class Problem
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® Classification vs. Prob Prediction
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PET Probability Estimation Trees

® - Smooth large trees

— correct estimates from small samples at leafs

. ° Average many trees

— average of many things each with a few discrete values
1S more continuous

— averages improve quality of estimates




| o Laplacian Smoothing

Small leaf count: 4+, 1—

Maximum Likelithood Estimate: k/N
~ P(H)=4/5=0.8; P(-)=1/5=0.22
Could easily be 3+, 2- or even 2+, 3-, or worse

Laplacian Correction: (k+1)/(N+C)
— P(+)=(4+1)/(5+2)=5/7=0.7143
— P(-)=(1+1)/(5+2) =2/7=0.2857
— If N=0, P(+)=P(-) = 1/2
— Bias towards P(class) = 1/C




| . Bagging (Model Averaging)

= ® - Train many trees with different random samples

» Average prediction from each tree




Table II. Summary of experimental results: AUC comparisons.

Systems Wins-Ties-Losses  Avg. diff. (%) Sign test Wilcoxon test
C4.4 vs. C4.5 18-1-6 2.0 1.0 0.3
C4.4 vs. C4.5-L 13-3-9 0.2 30.0 30.0
C4.5-L vs. C4.5 21-2-2 1.7 0.1 0.1
C4.5-B vs. C4.5 24-1-0 7.3 0.1 0.1
C4.4-B vs. C4.4 23-2-0 5.3 0.1 0.1
C4.4-B vs. C4.5-B 11-5-9 -0.1 45.0 50.0

no pruning or collapsing
Laplacian Smoothing
bagging

From Provost, Domingos pet-mlj 2002




| « Weaknesses of Decision Trees

Large or complex trees can be just as unintelligible as
other models

Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes...

Don’t hande real-valued parameters as well as Booleans

If model depends on summing contribution of many
different attributes, DTs probably won’t do well

DTs that look very different can be same/similar

Usually poor for predicting continuous values (regression)
Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree




[ . Popular Decision Tree Packages

ID3 (ID4, ID5, ...) [Quinlan]

— research code with many variations introduced to test new ideas

CART: Classification and Regression Trees [Breiman]
— best known package to people outside machine learning
— 1st chapter of CART book is a good introduction to basic issues

C4.5 (C5.0) [Quinlan]

— most popular package in machine learning community
— both decision trees and rules

IND (INDuce) [Buntine]

— decision trees for Bayesians (good at generating probabilities)
— available from NASA Ames for use in U.S.




[T When to Use Decision Trees

Regression doesn’t work
Model intelligibility 1s important
Problem does not depend on many features

— Modest subset of features contains relevant info

— not vision
Speed of learning 1s important
Linear combinations of features not critical

Medium to large training sets




[T Current Research

Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, ...

Handling real-valued attributes better

Using DTs to explain other models such as neural nets
Incorporating background knowledge

TDIDT on really large datasets

— >>10° training cases
— >> 10?3 attributes

Better feature selection
Unequal attribute costs
Decision trees optimized for metrics other than accuracy




