
0

 Methods

SIGIR 2003 Tutorial

Support Vector and Kernel

Thorsten Joachims

Cornell University
Computer Science Department

tj@cs.cornell.edu
http://www.joachims.org



14

b+ 0>
Linear Classifiers

Rules of the Form: weight vector , threshold 

Geometric Interpretation (Hyperplane):
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Assumption: The training examples are linearly se
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Maximizing the Margin

The hyperplane with maximum ma
<~ (roughly, see later) ~>

The hypothesis space with minimal VC-dimension
Support Vectors: Examples with minimal distance
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Non-Separable Training Sam

� For some training samples there is no separating h
� Complete separation is suboptimal for many traini

=> minimize trade-off between margin and training
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Soft-Margin Separation

Idea: Maximize margin and minimize training erro

  
Soft Margin:
minimize 
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argin and error.
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Controlling Soft-Margin Sepa

�  is an upper bound on the number of training 
� C is a parameter that controls trade-off between m

Soft Margin: minimize 
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ual OP

iαjyiyj xi xj⋅( )

i C≤

ξi

ξj
Properties of the Soft-Margin D

� typically single solution (i. e.  is unique)
� one factor  for each training example

� �influence� of single training example 
limited by C

�  <=> SV with 
�  <=> SV with 
�  else

� based exclusively on inner product 
between training examples

Dual OP: maximize 

                        s. t.  
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Primal <=> Dual

Theorem: The primal OP and the dual OP have the same solution. 
Given the solution  of the dual OP, 

is the solution of the primal OP.

Theorem: For any set of feasible points .

=> two alternative ways to represent the learning result
� weight vector and threshold 
� vector of �influences�  
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?

Non-Linear Problems

Problem:
� some tasks have non-linear structure
� no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules

==>
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 (6 Attributes)
Example

Input Space:  (2 Attributes)
Feature Space: 

x x1 x2,( )=

Φ x( ) x1
2 x2

2, 2x, 1 2x2 2x1x2 1,, ,( )=
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a degree two 
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Extending the Hypothesis S

Idea:

==> Find hyperplane in feature space!

Example: 

==> The separating hyperplane in features space is 
polynomial in input space.

Input Space

Feature Space

Φ

 a b c

a b c aa ab ac bb bc

Φ
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Kernels

Problem: Very many Parameters! Polynomials of d
attributes in input space lead to  attributes in f

Solution: [Boser et al., 1992] The dual OP need onl
Kernel Functions 

Example: For 

gives inner product in feature space.

We do not need to represent the feature spa

O Np( )
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SVM with Kernels

Training:  maximize 

 s. t.  

Classification: For new example x  

New hypotheses spaces through new Kernels:
Linear: 
Polynomial: 
Radial Basis Functions: 
Sigmoid: 
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f Degree 2

VM applet
Example: SVM with Polynomial o

Kernel: 
plot by Bell S
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VM applet
Example: SVM with RBF-K

Kernel: plot by Bell SK xi xj,( ) xi xj�
2
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Two Reasons for Using a Ke

(1) Turn a linear learner into a non-line
(e.g. RBF, polynomial, sigmoid)

(2) Make non-vectorial data accessible t

(e.g. string kernels for sequences
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Summary
What is an SVM?

Given:
� Training examples 
� Hypothesis space according to kernel 
� Parameter C for trading-off training error and mar
Training:
� Finds hyperplane in feature space generated by ke
� The hyperplane has maximum margin in feature s

training error (upper bound ) given C.
� The result of training are . They determin

Classification: For new example  
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rs
Part 2: How to use an SVM effect
efficiently?

�normalization of the input vecto
�selecting C

�handling unbalanced datasets
�selecting a kernel

�multi-class classification
� selecting a training algorithm
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How to Assign Feature Valu
Things to take into consideration:
� importance of feature is monotonic in its absolute

� the larger the absolute value, the more influen
� typical problem: number of doors [0-5], price
� want relevant features large / irrelevant featur

� normalization to make features equally important
� by mean and variance: 
� by other distribution

� normalization to bring feature vectors onto the sam
� directional data: text classification
� by normalizing the length of the vector 

some norm
� changes whether a problem is (linearly) separ

� scale all vectors to a length that allows numericall

xnorm
x mean X( )�

var X( )
-------------------------------=

xnorm
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kernel value
 kernel value

ample polynomial 

gn yiyj( )
Selecting a Kernel

Things to take into consideration:
� kernel can be thought of as a similarity measure

� examples in the same class should have high 
� examples in different classes should have low
� ideal kernel: equivalence relation 

� normalization also applies to kernel
� relative weight for implicit features
� normalize per example for directional data

 
 

� potential problems with large numbers, for ex
kernel   for  large d

K xi xj,( ) si=

K xi xj,( )
K xi xj,( )

K xi xi,( ) K xj xj,( )
-----------------------------------------------=
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 of leave-one-out 
][Joachims,2000]

def
1

K xi xi,( )∑
---------------------------=
Selecting Regularization Param
Common Method
� a reasonable starting point and/or default value is 
� search for C on a log-scale, for example 

� selection via cross-validation or via approximation
[Jaakkola&Haussler,1999][Vapnik&Chapelle,2000

Note 
� optimal value of C scales with the feature values

C

C 10 4� Cdef … 104C, , def[ ]∈
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γ

Selecting Kernel Paramete

Problem
� results often very sensitive to kernel parameters (e

RBF kernel)
� need to simultaneously optimize C, since optimal C

on kernel parameters
Common Method
� search for combination of parameters via exhausti
� selection of kernel parameters typically via cross-
Advanced Approach
� avoiding exhaustive search for improved search ef

et al, 2002]
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Handling Multi-Class / Multi-Labe

Standard classification SVM addresses binary probl
Multi-class classification: 

� one-against-rest decomposition into  binary 
� learn one binary SVM per class with 
� assign new example to 

� pairwise decomposition into  binary pr
� learn one binary SVM per class pair 
� assign new example by majority vote
� reducing number of classifications [Platt

� multi-class SVM [Weston & Watkins, 1998]
� multi-class SVM via ranking [Crammer & Si

y 1 … k, ,{ }∈

k

h i( )

y max h i( ) x([arg=

k k 1�( )
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	Goal:
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	Values: Occurrence- Frequencies
	==> The ordering of words is ignored!

	Paradoxon of Text Classification
	30,000 Attributes
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	... but this is not necessarily a problem!
	Good News: SVMs can overcome this problem!
	Bad News: This does not hold for all high-dimensional problems!
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	• 3299 test doc.
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	SVM
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	Part 1 (a): What is an SVM? (linear)
	• prediction error vs. training error
	• learning by empirical risk minimization
	• VC-Dimension and learnability
	• linear classification rules
	• optimal hyperplane
	• soft-margin separation

	Generative vs. Discriminative Training
	Process:
	• Generator: Generates descriptions according to distribution .
	• Teacher: Assigns a value to each description based on .

	Discriminative Training
	• make assumptions about the set H of classifiers
	• estimate error of classifiers in H from the training data
	• select classifier with lowest error rate
	• example: SVM, decision tree


	True (Prediction) Error
	What is a “good” classification rule ?
	Loss function D:
	• 1 if not equal
	• 0 if equal

	What is the “optimal” Learner ?
	Finds the classification rule for which is minimal:
	Problem:
	unknown. Known are training examples .

	Principle: Empirical Risk Minimization (ERM)
	Learning Principle:
	Find the decision rule for which the training error is minimal:
	Training Error:
	==> Number of misclassifications on training examples.
	Central Problem of Statistical Learning Theory:
	When does a low training error lead to a low generalization error?

	When is it Possible to Learn?
	Definition [Consistency]: ERM is consistent for
	• a hypothesis space H and
	• independent of the distribution

	if and only if the sequence
	converges in probability.
	<==> one-sided uniform convergence [Vapnik]
	<==> VC-dimension of H is finite [Vapnik].

	Vapnik/Chervonenkis Dimension
	Definition: The VC-dimension of H is equal to the maximal number d of examples that can be split ...
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	Linear Classifiers
	Rules of the Form: weight vector , threshold
	Geometric Interpretation (Hyperplane):

	Linear Classifiers (Example)
	Text Classification: Physics (+1) versus Receipes (-1)
	D1
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	D2
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	D3
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	D4
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	1
	-1
	w,b
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	3
	-1
	-3
	-1
	-1
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	b=1
	D1:
	D2:

	VC-Dimension of Hyperplanes in
	• Three points in can be shattered with hyperplanes.
	• Four points cannot be shattered.
	=> Hyperplanes in -> VCdim=3
	General: Hyperplanes in -> VCdim=N+1

	Rate of Convergence
	Question: After n training examples, how close is the training error to the true error?
	With probablility it hold for all :
	• n number of training examples
	• d VC-dimension of hypothesis space H

	==>

	SVM Motivation: Structural Risk Minimization
	Idea: Structure on hypothesis space.
	Goal: Minimize upper bound on true error rate.

	Optimal Hyperplane (SVM Type 1)
	Assumption: The training examples are linearly separable.

	VC-Dimension of “thick” Hyperplanes
	Lemma: The VCdim of hyperplanes with margin and description vectors is bounded by
	The VC-dimension does not necessarily depend on the number of attributes or the number of paramet...

	Maximizing the Margin
	The hyperplane with maximum margin
	<~ (roughly, see later) ~>
	The hypothesis space with minimal VC-dimension according to SRM
	Support Vectors: Examples with minimal distance.

	Computing the Optimal Hyperplane
	Training Examples:
	Requirement 1: Zero training error!
	Requirement 2: Maximum margin!
	Distance d of point x from hyperplane <w,b>:
	maximize d, with
	=> Requirement 1 & Requirement 2:
	maximize d, with

	Primal Optimization Problem
	maximize d, with
	Set :
	=> maximize , with
	Cancel:
	=> maximize , with
	Minimize inverse and take square:
	=> minimize , with

	Example: Optimal Hyperplane vs. Perceptron
	Train on 1000 pos / 1000 neg examples for “acq” (Reuters-21578).

	Non-Separable Training Samples
	• For some training samples there is no separating hyperplane!
	• Complete separation is suboptimal for many training samples!

	Soft-Margin Separation
	Idea: Maximize margin and minimize training error simultanously.
	Soft Margin:
	minimize
	s. t. and
	Hard Margin:
	minimize
	s. t.
	Hard Margin (separable)
	Soft Margin (training error)

	Controlling Soft-Margin Separation
	Soft Margin: minimize
	s. t. and
	• is an upper bound on the number of training errors.
	• C is a parameter that controls trade-off between margin and error.

	Large C
	Small C

	Example Reuters “acq”: Varying C
	Observation: Typically no local optima, but not necessarily...

	Part 1 (b): What is an SVM? (non-linear)
	• quadratic programs and duality
	• properties of the dual
	• non-linear classification rules
	• kernels and their properties
	• kernels for vectorial data
	• kernels for non-vectorial data

	Quadratic Program
	minimize
	s.t.
	s.t.
	• k linear inequality constraints
	• m linear equality constraints
	• Hessian is pos. semi-definite => convex, no local optima
	• is feasible, if it fulfills constraints


	Fermat Theorem
	Given an unconstrained optimization problem
	minimize
	with convex and differentiable, a necessary and sufficient conditions for a point to be an optimu...

	Lagrange Function
	Given an optimization problem
	minimize s.t.
	the Lagrangian function is defined as
	• and are called Lagrange Multipliers


	Lagrange Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all h affine (w*x+b), necessary and sufficient conditions for ...
	=>

	Karush-Kuhn-Tucker Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all g and h affine, necessary and sufficient conditions for a ...
	Sufficient for convex QP:

	Dual Optimization Problem
	Primal OP: minimize
	s. t. and
	Lemma: The solution can always be written as a linear combination
	of the training data.
	Dual OP: maximize
	s.t.
	==> positive semi-definite quadratic program

	Primal <=> Dual
	Theorem: The primal OP and the dual OP have the same solution. Given the solution of the dual OP,
	is the solution of the primal OP.
	Theorem: For any set of feasible points .
	=> two alternative ways to represent the learning result
	• weight vector and threshold
	• vector of “influences”


	Properties of the Soft-Margin Dual OP
	Dual OP: maximize
	s. t.
	• typically single solution (i. e. is unique)
	• one factor for each training example
	• “influence” of single training example limited by C
	• <=> SV with
	• <=> SV with
	• else
	• based exclusively on inner product between training examples


	Non-Linear Problems
	Problem:
	• some tasks have non-linear structure
	• no hyperplane is sufficiently accurate

	How can SVMs learn non-linear classification rules?

	Extending the Hypothesis Space
	Idea:
	==> Find hyperplane in feature space!
	Example:
	==> The separating hyperplane in features space is a degree two polynomial in input space.

	Example
	Input Space: (2 Attributes)
	Feature Space: (6 Attributes)

	Kernels
	Problem: Very many Parameters! Polynomials of degree p over N attributes in input space lead to a...
	Solution: [Boser et al., 1992] The dual OP need only inner products => Kernel Functions
	Example: For calculating gives inner product in feature space.
	We do not need to represent the feature space explicitly!

	SVM with Kernels
	Training: maximize
	s. t.
	Classification: For new example x
	New hypotheses spaces through new Kernels:
	Linear:
	Polynomial:
	Radial Basis Functions:
	Sigmoid:

	Example: SVM with Polynomial of Degree 2
	Kernel:
	plot by Bell SVM applet

	Example: SVM with RBF-Kernel
	Kernel: plot by Bell SVM applet

	What is a Valid Kernel?
	Mercer’s Theorem (see [Cristianini & Shawe-Taylor, 2000])
	Theorem [Saitoh]: Let X be a finite input space of n points . A function is a valid kernel in X i...
	that is symmetric
	and positive semi-definite

	How to Construct Valid Kernels?
	Theorem: Let and be valid Kernels over , , , , a real-valued function on , with a kernel over , a...
	=> Construct complex Kernels from simple Kernels.

	Kernels for Non-Vectorial Data
	Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequ...
	Example [Lodhi et al., 2002]: For consider the following features space
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	=> , efficient computation via dynamic programming.
	=> Fisher Kernels [Jaakkola & Haussler, 1998]

	Computing String Kernel (I)
	Definitions:
	• : sequences of length n over alphabet
	• : index sequence (sorted)
	• : substring operator
	• : range of index sequence

	Kernel: Average range of common subsequences of length n
	Auxiliary Function: Average range to end of sequence of common subsequences of length n

	Computing String Kernel (II)
	Kernel:
	Auxiliary:

	Other Kernels for Complex Data
	General information on Kernels:
	• Introduction to Kernels [Cristianini & Shawe-Taylor, 2000]
	• All the details on Kernels + Background [Schoelkopf & Smola, 2002]

	Kernels for specific structures:
	• Diffusion Kernels for graphs [Kondor & Lafferty, 2002]
	• Kernels for grammars [Collins & Duffy, 2002]
	• Kernels for trees, lists, etc. [Gaertner et al., 2002]


	Two Reasons for Using a Kernel
	(1) Turn a linear learner into a non-linear learner
	(e.g. RBF, polynomial, sigmoid)
	(2) Make non-vectorial data accessible to learner
	(e.g. string kernels for sequences)

	Summary What is an SVM?
	Given:
	• Training examples
	• Hypothesis space according to kernel
	• Parameter C for trading-off training error and margin size

	Training:
	• Finds hyperplane in feature space generated by kernel.
	• The hyperplane has maximum margin in feature space with minimal training error (upper bound ) g...
	• The result of training are . They determine .

	Classification: For new example
	Part 2: How to use an SVM effectively and efficiently?
	• normalization of the input vectors
	• selecting C
	• handling unbalanced datasets
	• selecting a kernel
	• multi-class and multi-label classification
	• selecting a training algorithm


	Design Decisions in Working with SVMs
	Setting up the learning task
	• multi-class problems
	• multi-label problems

	Representation of the data (efficiency and effectiveness)
	• selecting features
	• selecting feature values
	• normalizing the data (directional vs. non-directional data)
	• selecting a kernel

	Selecting a good value for the parameter C and kernel parameters
	Selecting a training algorithm that is efficient for the particular QP
	• kernel SVM vs. linear SVM
	• many sparse features vs. few dense features


	Handling Multi-Class / Multi-Label Problems
	Standard classification SVM addresses binary problems
	Multi-class classification:
	• one-against-rest decomposition into binary problems
	• learn one binary SVM per class with
	• assign new example to
	• pairwise decomposition into binary problems
	• learn one binary SVM per class pair
	• assign new example by majority vote
	• reducing number of classifications [Platt et al., 2000]
	• multi-class SVM [Weston & Watkins, 1998]
	• multi-class SVM via ranking [Crammer & Singer, 2001]

	Multi-label classification:
	• learn one binary SVM per class with


	Which Features to Choose?
	Things to take into consideration:
	• if features sparse, then dimensionality of space no efficiency problem
	• computations based on inner product between vectors
	• consider frequency distribution of features (e.g. many rare features)
	• Zipf distribution of words
	• see TCat-model
	• SVMs can handle redundancy in features
	• bag-of-words representation redundant for topic classification
	• see TCat-model
	• as few irrelevant features as possible
	• stopword removal often helps in text classification
	• see TCat-model


	How to Assign Feature Values?
	Things to take into consideration:
	• importance of feature is monotonic in its absolute value
	• the larger the absolute value, the more influence the feature gets
	• typical problem: number of doors [0-5], price [0-100000]
	• want relevant features large / irrelevant features low (e.g. IDF)
	• normalization to make features equally important
	• by mean and variance:
	• by other distribution
	• normalization to bring feature vectors onto the same scale
	• directional data: text classification
	• by normalizing the length of the vector according to some norm
	• changes whether a problem is (linearly) separable or not
	• scale all vectors to a length that allows numerically stable training


	Selecting a Kernel
	Things to take into consideration:
	• kernel can be thought of as a similarity measure
	• examples in the same class should have high kernel value
	• examples in different classes should have low kernel value
	• ideal kernel: equivalence relation
	• normalization also applies to kernel
	• relative weight for implicit features
	• normalize per example for directional data
	• potential problems with large numbers, for example polynomial kernel for large d


	Selecting Regularization Parameter C
	Common Method
	• a reasonable starting point and/or default value is
	• search for C on a log-scale, for example
	• selection via cross-validation or via approximation of leave-one-out [Jaakkola&Haussler,1999][V...

	Note
	• optimal value of C scales with the feature values
	• implicit slack variables via infrequent features
	• if every example has one unique feature , then always separable
	• unique features act like squared slack variable

	minimize s. t.

	Selecting Kernel Parameters
	Problem
	• results often very sensitive to kernel parameters (e.g. variance in RBF kernel)
	• need to simultaneously optimize C, since optimal C typically depends on kernel parameters

	Common Method
	• search for combination of parameters via exhaustive search
	• selection of kernel parameters typically via cross-validation

	Advanced Approach
	• avoiding exhaustive search for improved search efficiency [Chapelle et al, 2002]


	Handling Unbalanced Datasets
	Problem
	• often the number of positive examples is much lower than the number of negative examples
	• SVM minimizes error rate => always say “no” gives great error rate, but poor recall

	Common Methods
	• cost model that makes errors on positive examples more expensive

	min s.t. and
	• change threshold after training to some higher value


	Selecting an SVM Training Algorithm
	SVMlight (also SVMtorch, mySVM, BSVM, etc.) [Joachims, 1999b]
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• handles kernels and treats linear SVM as special case

	SMO [Platt, 1999]
	• special case of working sets of size two
	• simple analytical solution of QP subproblems

	ASVM [Mangasarian & Musicant, 2000]
	• restricted to linear SVMs with quadratic loss
	• fast for low dimensional data

	Nearest Point Algorithm [Keerthi et al., 1999]
	• restricted to quadratic loss
	• compute distance between convex hulls


	Part 3: How to Train SVMs?
	• efficiency of primal vs. dual
	• decomposition algorithm
	• working set selection
	• optimality criteria
	• caching
	• shrinking

	How can One Train SVMs Efficiently?
	Solve one of the following quadratic optimization problems:
	min
	s. t. and
	<= DUAL =>
	max
	s. t.
	=> positive semi-definite quadratic program with variables

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!
	Time complexity: working set of size and nonzero features:
	• extracting subproblem:
	• solving subproblem:
	• updating large problem with result of subproblem:


	What Working Set to Select Next?
	Solution: Select subproblem with q variables that minimizes
	Efficiency: Selection linear in number of examples.
	Convergence: Proofs by Chi-Chen Lin / Keerthi under mild assumptions.

	How to Tell that we Found the Optimal Solution?
	Karush-Kuhn-Tucker conditions lead to the following criterion:
	maximize
	is optimal s. t.
	<=>

	Demo
	The Steps of Solving a 2-d Problem.

	Caching
	Observation: Most CPU-time is spent on computing the Hessian!
	Idea: Cache kernel evaluations.
	Result: A small cache leads to a large improvement.

	Shrinking
	Idea: If we knew the set of SVs, we could solve a smaller problem! (complexity per iteration from...
	Algorithm:
	• monitor the KKT-conditions in each iteration
	• if a variable is “stuck at bound”, remove it
	• do final optimality check


	Summary How can One Train SVMs Efficiently?
	SVMlight (also SVMtorch, mySVM, BSVM, etc.)
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• select working set according to steepest feasible descent criterion
	• check optimality using Karush-Kuhn-Tucker conditions

	Other training algorithms:
	• SMO requires working set of size two => simple analytical solution of QP subproblems [Platt, 1999]
	• ASVM restricted to linear SVMs with quadratic loss => fast for low dimensional data [Mangasaria...
	• Nearest Point Algorithm restricted to quadratic loss => compute distance between convex hulls [...


	Part 3: Why do SVMs Work?
	• worst-case bounds
	• bounds on the expected generalization error
	• leave-one-out estimation
	• necessary criteria for leave-one-out

	...classifies as well as possible!?
	What is a “good” classification rule ?
	What is a “good” learner ?
	“Worst-Case” Learner:
	“Average-Case” Learner:

	SVMs as Worst-Case Learner
	Goal: Guarantee of the form
	Theorem: [Shawe-Taylor et al,1996]
	So, if
	• the training error on sample S is low and
	• the margin d is large,

	then with probablility the SVM will output a classification rule with true error .
	Problem: For most practical problems this bound is vacuous, i.e. .

	SVMs as Average-Case Learner
	Theorem: The expected error of an SVM is bounded by
	with the expected soft margin and the expected training error bound [Joachims, 2001] [Vapnik, 1998].
	Problem: The expectations are unknown.

	Leave-One-Out
	Training set:
	Approach: Repeatedly leave one example out for testing.
	...
	...

	Question: Is there a connection between margin and the estimate?

	Necessary Cond. for Leave-One-Out Error of SVM
	Lemma: SVM [Joachims, 2000] [Jaakkola & Haussler, 1999] [Vapnik & Chapelle, 2000]
	Input:
	0.0
	0.7
	3.5
	0.1
	1.3
	0.0
	0.0
	...
	OK
	OK
	ERROR
	OK
	OK
	OK
	OK
	...
	• dual variable of example i
	• slack variable of example i
	• bound on length

	=>

	Case 1: Example is no SV
	Case 2: Example is SV with Low Influence
	Case 2: Example is SV with Low Influence
	Case 3: Example has Small Training Error
	Case 3: Example has Small Training Error
	Experiment: Reuters-21578
	• 6451 training examples
	• 6451 test examples for holdout testing
	• ~27,000 features
	Average error estimate over 10 random training/test splits:
	=> small bias, variance of estimators is approximately equal

	Fast Leave-One-Out Estimation for SVMs
	Lemma: Training errors are always leave-out-out errors.
	Algorithm:
	• () = train_SVM(X,0,0);
	• for all training examples, do
	• if then loo++;
	• else if () then loo=loo;
	• else train_SVM();

	Experiment:
	Reuters
	6451
	0.20%
	0.58%
	11.1
	32.3
	WebKB
	2092
	6.78%
	20.42%
	78.5
	235.4
	Ohsumed
	10000
	1.07%
	2.56%
	433.0
	1132.3


	Estimated Error of SVM
	Leave-One-Out Error Estimate:
	For general SVMs:
	=>
	=>

	Summary Why do SVMs Work?
	If
	• the training error (on the sample S / on average) is low and
	• the margin d/R (on the sample S / on average) is large

	then
	• the SVM has learned a classification rule with low error rate with high probablility (worst-case).
	• the SVM learns classification rules that have low error rate on average.
	• the SVM has learned a classification rule for which the (leave-one- out) estimated error rate i...


	Part 4: When do SVMs Work Well?
	Successful Use:
	• Optical Character Recognition (OCR) [Vapnik, 1998]
	• Face Recognition, etc. [Osuna et al., 1997]
	• Text Classification [Joachims, 1997] [Dumais et al., 1998]
	• ...

	Open Questions:
	What characterizes these problems?
	How can the good performance be explained?
	What are “sufficient conditions” for using (linear) SVMs successfully?

	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.


	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.

	Obstacle:
	• No Free Lunch: There is no learner that does well on every task.


	Learning Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Learning SVM Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Representing Text As Feature Vectors
	Features: words (wordstems)
	Values: occurrence frequency
	==> Ignore ordering of words.

	Paradox of Text Classification
	30,000 attributes
	10,000 training examples

	Experimental Results
	Reuters Newswire
	• 90 categories
	• 9603 training doc.
	• 3299 test doc.
	• ~27000 features

	WebKB Collection
	• 4 categories
	• 4183 training doc.
	• 226 test doc.
	• ~38000 features

	Ohsumed MeSH
	• 20 categories
	• 10000 training doc.
	• 10000 test doc.
	• ~38000 features
	Naive Bayes
	72.3
	82.0
	62.4
	Rocchio Algorithm
	79.9
	74.1
	61.5
	C4.5 Decision Tree
	79.4
	79.1
	56.7
	k-Nearest Neighbors
	82.6
	80.5
	63.4
	SVM
	87.5
	90.3
	71.6



	Why Do SVMs Work Well for Text Classification?
	A statistical learning model of text classification with SVMs:
	text classification task

	Margin/Loss Based Bound on the Expected Error
	Theorem: The expected error of a soft margin SVM is bounded by
	Where is the expected soft margin and is the expected training loss on training sets of size .

	First Step Completed
	text classification task

	Properties 1+2: Sparse Examples in High Dimension
	• High dimensional feature vectors (30,000 features)
	• Sparse document vectors: only a few words of the whole language occur in each document
	Reuters Newswire Articles
	9,603
	27,658
	74
	(0.27%)
	Ohsumed MeSH Abstracts
	10,000
	38,679
	100
	(0.26%)
	WebKB WWW-Pages
	3,957
	38,359
	130
	(0.34%)


	Property 3: Heterogeneous Use Of Words
	MODULAIRE BUYS BOISE HOMES PROPERTY
	Modulaire Industries said it acquired the design library and manufacturing rights of privately-ow...
	No pair of documents shares any words, but “it”, “the”, “and”, “of”, “for”, “an”, “a”, “not”, “th...

	Property 4: High Level Of Redundancy
	=> Few features are irrelevant!

	Property 5: “Zipf’s Law”
	Zipf’s Law: In text, the i-th frequent word occurs times.
	=> Most words occur very infrequently!

	Text Classification Model
	Definition: For the TCat-concept there are disjoint sets of features. Each positive (negative) ex...
	Example:

	TCat-Concept for WebKB “Course”
	Real Text Classification Tasks as TCat-Concepts
	Reuters “Earn”:
	Webkb “Course”:
	Ohsumed “Pathology”:

	Second Step Completed
	text classification task

	The Margin of TCat-Concepts
	Lemma 1: For -concepts there is always a hyperplane passing through the origin with margin at least
	Example: The previous example WebKB “course” has a margin of at least

	The Length of Document Vectors
	Lemma 2: If the ranked term frequencies in a document with words have the form of the generalized...
	based on their frequency rank , then the Euclidean length of the document vector is bounded by
	Example: For WebKB “course” with
	follows that .

	, , and for Text Classification
	Reuters Newswire Stories
	• 10 most frequent categories
	• 9603 training examples
	• 27658 attributes
	1143
	0
	1848
	0
	1489
	27
	585
	0
	810
	4
	869
	9
	2082
	33
	458
	0
	405
	2
	378
	0



	Learnability of TCat-Concepts
	Theorem: For -concepts and documents with words that follow the generalized Zipf’s Law the expect...

	Comparison Theory vs. Experiments
	Reuters “earn”
	1.5%
	1.3%
	WebKB “course”
	11.2%
	4.4%
	Ohsumed “pathology”
	94.6%
	23.1%
	• Model can differentiate between “difficult” and “easy” tasks
	• Predicts and reproduces the effect of information retrieval heuristics (e.g. TFIDF-weighting)

	Sensitivity Analysis
	What makes a text classification problem suitable for a linear SVM?
	High Redundancy:
	High Discriminatory Power:
	High Frequency:

	What does this Model Provide?
	Connects the statistical properties of text classification tasks with generalization error of SVM!
	text classification task
	=>
	• Explains the behavior of (linear) SVMs on text classification tasks
	• Gives guideline for when to apply (linear) SVMs
	• Provides formal basis for developing new methods


	Summary When do (Linear) SVMs Work Well?
	Intuition: If the problem can be cast as a TCat-concept with
	• high redundancy,
	• strongly discriminating features
	• particularly in the high frequency region

	then linear SVMs achieve a low generalization error [Joachims, 2002].
	Assumptions and Restrictions:
	• no noise (attribute and classification)
	• no variance (only “average” examples)
	• only upper bounds, no lower bounds


	Part 3: SVM-X?
	• common elements of SVMs for other problem
	• learning ranking functions from preferences
	• novelty and outlier detection
	• regression

	The Receipe for Cooking an SVMs
	Ingredients:
	• linear prediction rules
	• training problem with objective a la and with linear constraints (=> quadratic program)

	Stirr and add flavor:
	• Classification
	• Ranking [Herbrich et al., 2000][Joachims, 2002c]
	• Novelty Detection [Schoelkopf et al., 2000]
	• Regression [Vapnik, 1998][Smola & Schoelkopf, 1998]

	That makes:
	• nice SVM with global optimal solution and duality
	• often sparse solution (#SVs < n)
	• Hint: garnish the dual with kernel to get non-linear prediction rules


	SVM Ranking
	Query:
	• “Support Vector Machine”

	Goal:
	• “rank the document I want high in the list”


	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Learning to Rank
	Assume:
	• distribution of queries P(Q)
	• distribution of target rankings for query P(R | Q)

	Given:
	• collection D of m documents
	• i.i.d. training sample

	Design:
	• set of ranking functions F, with elements f: (weak ordering)
	• loss function
	• learning algorithm

	Goal:
	• find with minimal


	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	Interpretation of Loss Function
	Notation:
	• P concordant pairs
	• Q discordant pairs

	Kendall’s Tau: total ordering, uniform sampling of document pairs
	Average Precision: ordering with two ranks

	What does the Ranking Function Look Like?
	Sort documents by their “retrieval status value” rsv(,) with query [Fuhr, 89]:
	rsv(,) = * #(of query words in title of ) + * #(of query words in H1 headlines of ) ... + * PageR...
	Select F as:

	Minimizing Training Loss For Linear Ranking Functions
	Given:
	• training sample

	Zero training loss on S:
	Minimize (bound on) training loss (total ordering) on S:

	Ranking Support Vector Machine
	Optimization Problem (primal):
	Properties:
	• minimize trade-off between training loss and margin size d = 1 / ||w||
	• quadratic program, similar to classification SVM (=> SVMlight)
	• convex => unique global optimum
	• radius of ball containing the training points R


	How is this different from ...
	... classification?
	f1(q): - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	f2(q): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
	=> both have same error rate (always classify as non-relevant)
	=> very different rank loss
	... ordinal regression?
	Training set , with Y ordinal (and finite)
	=> ranks need to be comparable between examples

	Experiment Setup
	Collected training examples with partial feedback about ordering from
	• user skipping links

	=> (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	• clicked on document should be ranked higher than 50 random documents =>


	Query/Document Match Features F(q,d)
	Rank in other search engine:
	• Google, MSNSearch, Altavista, Hotbot, Excite

	Query/Content Match:
	• cosine between URL-words and query
	• cosine between title-words and query
	• query contains domain-name

	Popularity Attributes:
	• length of URL in characters
	• country code of URL
	• domain of URL
	• word “home” appears in title
	• URL contains “tilde”
	• URL as an atom


	Experiment I: Learning Curve
	Training examples: preferences from 112 queries

	Experiment II
	Experiment Setup:
	• meta-search engine (Google, MSNSearch, Altavista, Hotbot, Excite)
	• approx. 20 users
	• machine learning students and researchers from University of Dortmund AI Unit (Prof. Morik)
	• asked to use system as any other search engine
	• display title and URL of document

	collected training data => 260 training queries (with at least one click)

	Experiment: Learning vs. Google/MSNSearch
	Learned
	Google
	29
	13
	27
	69
	Learned
	MSNSearch
	18
	4
	7
	29
	Learned
	Toprank
	21
	9
	11
	41
	~20 users, as of 2nd of December

	Toprank: rank by increasing mimium rank over all 5 search engines
	=> Result: Learned > Google Learned > MSNSearch Learned > Toprank

	Learned Weights
	0.60
	cosine between query and abstract
	0.48
	ranked in top 10 from Google
	0.24
	cosine between query and the words in the URL
	0.24
	document was ranked at rank 1 by exactly one of the 5 search engines
	...
	0.17
	country code of URL is “.de”
	0.16
	ranked top 1 by HotBot
	...
	-0.15
	country code of URL is “.fi”
	-0.17
	length of URL in characters
	-0.32
	not ranked in top 10 by any of the 5 search engines
	-0.38
	not ranked top 1 by any of the 5 search engines

	Summary: SVM Ranking
	• An SVM method for learning ranking functions
	• Training examples are rankings => pairwise preferences like “A should be ranked higher than B”
	• Turn training examples into linear inequality constraints
	• Results in quadratic program similar to classification
	• Rank new examples by sorting according to distance from hyperplane
	Applications:
	• personalizing search engines
	• tuning retrieval functions in XML intranets
	• recommender systems
	• betting on horses


	SVM Novelty/Outlier Detection
	Assume:
	• distribution of feature vectors P(X)

	Goal: [Schölkopf et al., 1995] [Tax & Duin, 2001]
	• find the region R of -support for the distribution P(X), i.e.
	• keep the volume of R as small as possible

	=> new points falling outside of R are either outliers, or the distribution must have changed.
	Problem:
	• estimate R from unlabeled oberservations


	Example: Small and Large Volume Regions
	Assume that we know the distribution P(X).
	All following are regions with :
	trivial optimal sub-optimal

	Find Region using Examples
	Problem:
	• P(X) cannot be observed directly.

	Given:
	• training oberservations drawn according to P(X).

	Approach: [Schoelkopf et al., 1995][Tax & Duin, 2001]
	• find smallest ball that includes (most) training observations

	min
	s. t.
	• is the center of the ball, is its radius.


	Properties of the Primal/Dual
	min
	s. t.
	Properties:
	• convex => global optimum
	• measures distance from ball
	• : example lies inside the ball
	• : example on hull of ball
	• : example is training error


	One-Class SVM: Separating from the Origin
	Observation: [Schölkopf et al., 2000][Schölkopf et al., 2001]
	• For kernels depending on the distance between points, the dual is the same as for classificatio...
	• all training observations in the positive class (with slack)
	• one virtual negative example with and .

	max
	s. t.
	=> Equivalent for RBF kernel !

	Influence of C and RBF-Width s2
	small C large width s2 no outliers
	small C large width s2 some ouliers
	large C large width s2
	small C small width s2 (plots courtesy of B. Schoelkopf)

	Summary: SVM Novelty Detection
	• Find small region where most observations fall
	• One-Class SVM: separate observations from origin
	• Outliers (or new observations after shift in distribution) lie outside of region
	• Training problem similar to classification SVM
	Further work:
	• Extension to -SVMs and error bounds [Schölkopf et al., 2001] [Schölkopf et al., 2001]
	• SVM clustering [Ben-Hur et al., 2001]

	Applications:
	• Text classification [Manevitz & Yousef, 2001]
	• Topic detection


	SVM Regression
	Loss function:
	• -insensitive region with zero loss
	• linear loss beyond the “tube”


	Primal SVM Optimization Problems
	Classification:
	minimize
	s. t. and
	Regression:
	minimize
	s. t. and
	and

	Dual SVM Optimization Problems
	maximize
	s.t.
	Classification:
	• for
	• for
	• for

	Regression:
	• for and for
	• for and for
	• for and for


	Conclusions
	• What! How! Why! When! ...and that SVMs solve any other problem!
	Info
	• Chris Burges’ tutorial (Classification) http://www.kernel-machines.org/papers/Burges98.ps.gz
	• Smola & Schölkopf’s tutorial (Regression) http://www.kernel-machines.org/papers/tr-30-1998.ps.gz
	• Cristianini & Shawe-Taylor book: Introduction to SVMs, Cambridge University Press, 2000.
	• Schölkopf’ & Smola book: Learning with Kernels, MIT Press, 2002.
	• My dissertation: Learning to Classify Text Using Support Vector Machines, Kluwer.
	• Software: SVMlight for Classification, Regression, and Ranking http://svmlight.joachims.org/
	• General: http://www.kernel-machines.org


	Bibliography
	• [Ben-Hur et al., 2001] Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V. (2001). Support Vector...
	• [Bennet & Demiriz, 1999] K. Bennet and A. Demiriz (1999). Semi- supervised support vector machi...
	• [Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A traininig algorith...
	• [Burges, 1998] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. ...
	• [Chapelle et al., 2002] Chapelle, O., V. Vapnik, O. Bousquet and S. Mukherjee (2002). Choosing ...
	• [Cohen et al., 1999] W. Cohen, R. Shapire, and Y. Singer (1999). Learning to order things. Jour...
	• [Collins & Duffy, 2001] Collins, M., and Duffy, N. (2001). Convolution kernels for natural lang...
	• [Cortes & Vapnik, 1995] Cortes, C. and Vapnik, V. N. (1995). Support-vector networks. Machine L...
	• [Crammer & Singer, 2001] K. Crammer and Y. Singer (2001). On the algorithmic implementation of ...
	• [Cristianini & Shawe-Taylor, 2000] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction...
	• [Dumais et al., 1998] Dumais, S., Platt, J., Heckerman, D., and Sahami, M. (1998). Inductive le...
	• [Gaertner et al., 2002] Gaertner, T., Lloyd, J., Flach, P. (2002). Kernels for structured data....
	• [Herbrich et al., 2000] R. Herbrich, T. Graepel, K. Obermayer (2000). Large Margin Rank Boundar...
	• [Jaakkola, and Haussler, 1998] Jaakkola, T. and Haussler, D. (1998). Exploiting generative mode...
	• [Jaakkola and Haussler, 1999] Jaakkola, T. and Haussler, D. (1999). Probabilistic kernel regres...
	• [Joachims, 1998] Joachims, T. (1998). Text categorization with support vector machines: Learnin...
	• [Joachims, 1999a] Joachims, T. (1999a). Aktuelles Schlagwort: Support Vector Machines. Künstlic...
	• [Joachims, 1999b] Joachims, T. (1999b). Making Large-Scale SVM Learning Practical. In Schölkopf...
	• [Joachims, 1999c] Joachims, T. (1999c) Transductive Inference for Text Classification using Sup...
	• [Joachims, 2002] Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines: ...
	• [Joachims, 2002c] Joachims, T. (2002). Optimizing Search Engines using Clickthrough Data, Confe...
	• [Keerthi et al., 1999] Keerthi, S., Shevade, S., Bhattacharyya, C., and Murthy, K. (1999). A fa...
	• [Kindermann & Paass, 2000] Kindermann, Jörg and Paass, Gerhard: Multiclass Classification with ...
	• [Kondor & Lafferty, 2002] Kondor, I., and Lafferty, J. (2002). Diffusion kernels on graphs and ...
	• [Lodhi et al., 2002] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. ...
	• [MacKay, 1997] D.J.C. MacKay. Introduction to gaussian processes, 1997. Tutorial at ICANN'97. f...
	• [Manevitz & Yousef, 2001] L. Manevitz and M. Yousef (2001). One- Class SVMs for Document Classi...
	• [Mangasarian and Musicant, 2000] Mangasarian, O. L. and Musicant, D. R. (2000). Active support ...
	• [Osuna et al., 1997] Osuna, E., Freund, R., and Girosi, F. (1997b). Training support vector mac...
	• [Platt, 1999] Platt, J. (1999). Fast training of support vector machines using sequential minim...
	• [Platt et al., 2000] Platt, J., Cristianini, N., and Shawe-Taylor, J. (2000). Large margin dags...
	• [Schölkopf et al., 1995] Schölkopf, B., Burges, C., Vapnik, V. (1995). Extracting support data ...
	• [Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Mueller, K.-R. (1998). Nonlinear compone...
	• [Schölkopf et al., 2000] Schölkopf, B., R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. ...
	• [Schölkopf et al., 2001] Schölkopf, B., J. Platt, J. Shawe-Taylor, A.J. Smola and R.C. Williams...
	• [Schölkopf & Smola, 2002] Schölkopf, B., Smola, A. (2002). Learning with Kernels, MIT Press.
	• [Shawe-Taylor et al., 1996] Shawe-Taylor, J., Bartlett, P., Williamson, R., and Anthony, M. (19...
	• [Smola & Schölkopf, 1998] A. J. Smola and B. Schölkopf. A Tutorial on Support Vector Regression...
	• [Tax & Duin, 1999] D. Tax and R. Duin (1999). Support vector domain description. Patter Recogni...
	• [Tax & Duin, 2001] D. Tax and R. Duin (2001). Uniform Object Generation for Optimizing One-Clas...
	• [Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. Wiley, Chichester, GB.
	• [Vapnik & Chapelle, 2000] V. Vapnik and O. Chapelle. Bounds on Error Expectation for Support Ve...
	• [Wapnik & Tscherwonenkis, 1979] Wapnik, W. and Tscherwonenkis, A. (1979). Theorie der Zeichener...
	• [Weston & Watkins, 1998] Weston, J. and Watkins, C. (1998). Multi- class support vector machine...




