
Memory-Based Learning

Instance-Based Learning

K-Nearest Neighbor



Motivating Problem



Inductive Assumption

• Similar inputs map to similar outputs
– If not true => learning is impossible

– If true => learning reduces to defining “similar”

• Not all similarities created equal
– predicting a person’s weight may depend on

different attributes than predicting their IQ



1-Nearest Neighbor

• works well if no attribute or class noise

• as number of training cases grows large, error rate
of 1-NN is at most 2 times the Bayes optimal rate

Dist(c1,c2 ) = attri (c1) - attri (c2 )( )2

i=1

N
Â

NearestNeighbor = MIN j (Dist(cj ,ctest ))

predictiontest = class j (or valuej )



k-Nearest Neighbor

• Average of k points more reliable when:
– noise in attributes

– noise in class labels

– classes partially overlap

Dist(c1,c2 ) = attri (c1) - attri (c2 )( )2

i=1

N
Â

k - NearestNeighbors = k - MIN(Dist(ci ,ctest )){ }
predictiontest =

1
k

classii=1

k
Â (or 1

k
valueii=1

k
Â )
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 How to choose “k”

• Large k:
– less sensitive to noise (particularly class noise)

– better probability estimates for discrete classes

– larger training sets allow larger values of k

• Small k:
– captures fine structure of space better

– may be necessary with small training sets

• Balance must be struck between large and small k

• As training set approaches infinity, and k grows
large, kNN becomes Bayes optimal



From Hastie, Tibshirani, Friedman 2001 p418
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Cross-Validation

• Models usually perform better on training data
than on future test cases

• 1-NN is 100% accurate on training data!

• Leave-one-out-cross validation:
– “remove” each case one-at-a-time

– use as test case with remaining cases as train set

– average performance over all test cases

• LOOCV is impractical with most learning
methods, but extremely efficient with MBL!



Distance-Weighted kNN

• tradeoff between small and large k can be difficult
– use large k, but more emphasis on nearer neighbors?

predictiontest =
wi * classi

i=1

k

Â

wi
i =1

k

Â
(or

wi * valuei
i =1

k

Â

wi
i =1

k

Â
)

wk =
1

Dist(ck, ctest )



Locally Weighted Averaging

• Let k = number of training points

• Let weight fall-off rapidly with distance

predictiontest =
wi * classi

i=1

k

Â

wi
i =1

k

Â
(or

wi * valuei
i =1

k

Â

wi
i =1

k

Â
)

wk =
1

e KernelWidth⋅Dist (ck ,c test )

• KernelWidth controls size of neighborhood that
has large effect on value (analogous to k)



Locally Weighted Regression

• All algs so far are strict averagers: interpolate, but
can’t extrapolate

• Do weighted regression, centered at test point,
weight controlled by distance and KernelWidth

• Local regressor can be linear, quadratic, n-th
degree polynomial, neural net, …

• Yields piecewise approximation to surface that
typically is more complex than local regressor



Euclidean Distance

D(c1,c2) = attri (c1) - attri (c2)( )2

i=1

N
Â

• gives all attributes equal weight?
– only if scale of attributes and differences are similar

– scale attributes to equal range or equal variance

• assumes spherical classes
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Euclidean Distance?

• if classes are not spherical?

• if some attributes are more/less important than
other attributes?

• if some attributes have more/less noise in them
than other attributes?
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Weighted Euclidean Distance

• large weights => attribute is more important

• small weights => attribute is less important

• zero weights => attribute doesn’t matter

• Weights allow kNN to be effective with elliptical classes

• Where do weights come from?

D(c1,c2) = wi ⋅ attri (c1) - attri (c2)( )2

i=1

N
Â



Learning Attribute Weights

• Scale attribute ranges or attribute variances to
make them uniform (fast and easy)

• Prior knowledge

• Numerical optimization:
– gradient descent, simplex methods, genetic algorithm

– criterion is cross-validation performance

• Information Gain of single attributes



Information Gain

• Information Gain = reduction in entropy due to
splitting on an attribute

• Entropy = expected number of bits needed to
encode the class of a randomly drawn + or –
example using the optimal info-theory coding

Entropy = - p+ log2 p+ - p- log2 p-

Gain(S, A) = Entropy(S) -
Sv
S

Entropy(Sv )
vŒValues(A)

Â



Booleans, Nominals, Ordinals, and Reals

• Consider attribute value differences:
(attri (c1) – attri(c2))

• Reals: easy! full continuum of differences

• Integers: not bad: discrete set of differences

• Ordinals: not bad: discrete set of differences

• Booleans: awkward: hamming distances 0 or 1

• Nominals? not good! recode as Booleans?



Curse of Dimensionality

• as number of dimensions increases, distance between
points becomes larger and more uniform

• if number of relevant attributes is fixed, increasing the
number of less relevant attributes may swamp distance

• when more irrelevant than relevant dimensions, distance
becomes less reliable

• solutions: larger k or KernelWidth, feature selection,
feature weights, more complex distance functions

D(c1,c2) = attri (c1) - attri (c2)( )2
+ attrj (c1) - attrj (c2)( )2

j =1

irrelevant
Â

i=1

relevant
Â



Advantages of Memory-Based Methods

• Lazy learning: don’t do any work until you know what you
want to predict (and from what variables!)
– never need to learn a global model
– many simple local models taken together can represent a more

complex global model
– better focussed learning
– handles missing values, time varying distributions, ...

• Very efficient cross-validation
• Intelligible learning method to many users
• Nearest neighbors support explanation and training
• Can use any distance metric: string-edit distance, …



Weaknesses of Memory-Based Methods

• Curse of Dimensionality:
– often works best with 25 or fewer dimensions

• Run-time cost scales with training set size

• Large training sets will not fit in memory

• Many MBL methods are strict averagers

• Sometimes doesn’t seem to perform as well as other
methods such as neural nets

• Predicted values for regression not continuous



Combine KNN with ANN

• Train neural net on problem

• Use outputs of neural net or hidden unit
activations as new feature vectors for each point

• Use KNN on new feature vectors for prediction

• Does feature selection and feature creation

• Sometimes works better than KNN or ANN



Current Research in MBL

• Condensed representations to reduce memory requirements
and speed-up neighbor finding to scale to 106–1012 cases

• Learn better distance metrics

• Feature selection

• Overfitting, VC-dimension, ...

• MBL in higher dimensions

• MBL in non-numeric domains:
– Case-Based Reasoning
– Reasoning by Analogy
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Closing Thought

• In many supervised learning problems, all the information
you ever have about the problem is in the training set.

• Why do most learning methods discard the training data
after doing learning?

• Do neural nets, decision trees, and Bayes nets capture all
the information in the training set when they are trained?

• In the future, we’ll see more methods that combine MBL
with these other learning methods.
– to improve accuracy

– for better explanation
– for increased flexibility


