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s Supervised Learning

Decision trees
Artificial neural nets
K-nearest neighbor
Support vectors
Linear regression

Logistic regression




Supervised Learning

* y=F(x): true function (usually not known)
* D: training sample drawn from F(x)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78.M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74.M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1




Supervised Learning

Train Set:

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0

78.M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
74.M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1

=

1
0
0
1
0
1
0
0
0
1

Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0




Supervised Learning

F(x): true function (usually not known)
D: training sample drawn from F(x)

574M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
78.M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0

G(x): model learned from training sample D
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ?

Goal: E<(F(x)-G(x))>> is small (near zero) for
future test samples drawn from F(x)

0
1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0
0
1
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A Simple Decision Tree
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Representation
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A Real Decision Tree
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| : A Real Decision Tree
=

Decision Tree Trained on 1000 Patients:

+833+167 (tree) 0.8327 0.1673 0
fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0
previous csection = 0: +767+81 (tree) 0.904 0.096 0
primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
fetal distress = 0: +334+47 (tree) 0.8757 0.1243 0
| birth weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
| birth weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
fetal distress = 1: +34+21 (tree) 0.6161 0.3839 0

| previous csection = 1: +55+35 (tree) 0.6099 0.3901 0
= @ fetal presentation =2: +3+29 (tree) 0.1061 0.8939 1
fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1




Real Data: C-Section Prediction

Demo summary:

Fast

Reasonably intelligible

Larger training sample => larger tree
Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell




Search Space

all possible sequences of all possible tests

very large search space, e.g., if N binary attributes:
— 1 null tree _

N trees with 1 (root) test o(I

N*(N-1) trees with 2 tests <v°\
N*(N-1)*(N-1) trees with 3 tests R <A

. N
~ N* trees with 4 tests o

size of search space is exponential in number of attributes
— too big to search exhaustively
— exhaustive search probably would overfit data (too many models)
— so what do we do instead?




Top-Down Induction of Decision Trees

* a.k.a. Recursive Partitioning
— find “best” attribute test to install at root

split data on root test
find “best” attribute tests to install at each new node

split data on new tests

repeat until:
+ all nodes are pure
all nodes contain fewer than k cases
distributions at nodes indistinguishable from chance
tree reaches predetermined max depth
no more attributes to test




Find “Best” Split?

Attribute_1 ? Attribute_2 ?

right left

| # Class, I, #Class, |
# Class+#Class, J [# Class+# Class, J

leftnodel rightnode

0.6234 0.4412




[® Splitting Rules

* Information Gain = reduction in entropy due to
splitting on an attribute

. Entropy = expected number of bits needed to
encode the class of a randomly drawn + or —

example using the optimal info-theory coding

Entropy=-p_ log,p, —p_log, p_

s,
Gain(S,A) = Entropy(S) - E — Entropy( S, )

vEValues(A) |SI




0.40 0.60

fraction in class 1




Splitting Rules

* Problem with Node Purity and Information Gain:
— prefer attributes with many values

— extreme cases:
+ Social Security Numbers
* patient ID’s

* integer/nominal attributes with many values (JulianDay)
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» Splitting Rules

Entropy(S) - 2 Entropy (S,)

vEValuefA)

E —log, = ‘S

vEValuesA)




- : Gain Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

-
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_ P
§° Splitting Rules

— Measure of node impurity

GINI,,,(Node)=1- Y[p,T’

cEclasses

GINI

split

A=Y >, GINI(N.,)

vE&Values(A) ‘S




Expenment

Randomly select # of cases: 2-1000
Randomly select fraction of +’s and -’s

Randomly select attribute arity: 2-1000

Randoml
Compute 1G, GR, GINI

741 cases: 309+, 432-

<«— random arity




Info Gain
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Gain Ratio
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* Info - Gain vs. Gain Ratio

T TF
“ng.ig.gr.gi* using .
R
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Overfitting

0.9

g
i
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g
-,

On training data ——
On test data

30 40 50 60 70 80

Size of tree (number of nodes)




' Pre-Pruning (Early Stopping)

 Evaluate splits before installing them:
— don’t install splits that don’t look worthwhile

— when no worthwhile splits to install, done

* Seems right, but:

— hard to properly evaluate split without seeing what
splits would follow it (use lookahead?)

— some attributes useful only in combination with other
attributes

— suppose no single split looks good at root node?




[® Post-Pruning

Grow decision tree to full depth (no pre-pruning)

Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

Use train set, or an independent prune/test set, to
evaluate splits

Stop pruning when remaining splits all appear to
be warranted

Alternate approach: convert to rules, then prune
rules
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#® - Optimal

— Maximum expected accuracy (test set)

' Greedy vs. Optimal

Minimum size tree
Minimum depth tree
Fewest attributes tested
Easiest to understand

* Test order not always important for accuracy
* Sometimes random splits perform well




* Decision Tree Predictions

Classification

Simple probability
Smoothed probability
Probability with threshold(s)




: n
Performance Measures

- :3
® - Accuracy
.9 — High accuracy doesn’t mean good performance

— Accuracy can be misleading
—  What threshold to use for accuracy?

# test

= E (1-Pred_Prob, (True_Class )

=1

g ¢ Other measures: ROC, Precision/Recall, ...




i

§° Attribute Types

by

Boolean
Nominal
Ordinal
Integer

Continuous

— Sort by value, then find best threshold for binary split
— Cluster 1nto n intervals and do n-way split




Mlssmg Attribute Values

* Some data sets have many missing values




# test

RMSE = ) (True, - Pred,)’

=1




Converting Decision Trees to Rules

* each path from root to a leaf 1s a separate rule:

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0

previous csection = 0: +767+81 (tree) 0.904 0.096 0

| primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | fetal distress =0: +334+47 (tree) 0.8757 0.1243 0

| | | birth weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1

e
-9
®
-9
2
- ®
E
| ®

if (=1 & —pc & primip & ~fd & bw<3349) => 0,
if (fp=2) => 1,
if (fp=3) => 1.




o Advantages of Decision Trees

TDIDT is relatively fast, even with large data sets (109)
and many attributes (10°3)
— advantage of recursive partitioning: only process all cases at root

Small-medium size trees usually intelligible

Can be converted to rules

TDIDT does feature selection

TDIDT often yields compact models (Occam’s Razor)

Decision tree representation is understandable
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Part of Best Performing C-Section Decision Tree
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— few leafs
— few discrete probabilities

— many leafs
— few cases per leaf

— few discrete probabilities
— probability estimates based on small/noisy samples

* What to do?




: " A Simple Two-Class Problem
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From Provost, Domingos pet-mlj 2002




Original
C4.4 Estimata
C4.5 Estimate

H valua

From Provost, Domingos pet-mlj 2002




2o
: A Harder Two-Class Problem
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- : Classification vs. Prob Prediction
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— correct estimates from small samples at leafs

* Average many trees

— average of many things each with a few discrete values
1S more continuous

— averages improve quality of estimates




Laplaman Smoothing

Small leaf count: 4+, 1—

Maximum Likelithood Estimate: k/N

— P(+)=4/5=0.8; P(-)=1/5=0.27
Could easily be 3+, 2- or even 2+, 3-, or worse
Laplacian Correction: (k+1)/(N+C)

~P(H) = (4+1)/(5+2) = 5/7 = 0.7143

~ P(0) = (1+1)/(5+2) = 2/7 = 0.2857

~ IfN=0, P(+)=P(-) = 1/2

— Bias towards P(class) = 1/C




Baggmg (Model Averaging)

* Train many trees with different random samples
* Average prediction from each tree




Results

Table I1. Summary of experimental results: AUC comparisons,

Systems Wins-Ties-Losses  Avg, diff. (%) Sign test  Wilcoxon test
C4.4 vs. C4.5 18-1-6 2.0 L0 0.3
C4.4 vs. C4.5-L 13-3-9 0.2 30.0 30.0
C4.5-L vs. C4.5 21-2-2 1.7 0.1 0.1
C4.5-B vs. C4.5 24-1-10 7.3 0.1 0.1
C4.4-B vs. C4d.4 23-2-10 5.3 0.1 0.1
C4.4-B vs. C4.5-B | 11-5-19 ~0.1 45.0 50.0

no pruning or collapsing
Laplacian Smoothing
bagging

From Provost, Domingos pet-mlj 2002




| . Weaknesses of Decision Trees

Large or complex trees can be just as unintelligible as
other models

Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes...

Don’t hande real-valued parameters as well as Booleans

If model depends on summing contribution of many
different attributes, DTs probably won’t do well

DTs that look very different can be same/similar

Usually poor for predicting continuous values (regression)
Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree




| Popular Decision Tree Packages

ID3 (ID4, ID5, ...) [Quinlan]

— research code with many variations introduced to test new ideas

CART: Classification and Regression Trees [ Breiman]

— best known package to people outside machine learning
— 1st chapter of CART book 1s a good introduction to basic issues

C4.5 (C5.0) [Quinlan]

— most popular package in machine learning community
— both decision trees and rules

IND (INDuce) [Buntine]

— decision trees for Bayesians (good at generating probabilities)
— available from NASA Ames for use in U.S.




When to Use Decision Trees

Regression doesn’t work
Model intelligibility 1s important
Problem does not depend on many features

— Modest subset of features contains relevant info
— not vision

Speed of learning 1s important
Linear combinations of features not critical

Medium to large training sets




| . Current Research

Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, ...

Handling real-valued attributes better

Using DTs to explain other models such as neural nets
Incorporating background knowledge

TDIDT on really large datasets

— >> 106 training cases
— >> 103 attributes

Better feature selection
Unequal attribute costs

Decision trees optimized for metrics other than accuracy




