Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression

## y=F(x): true function (usually not known)D: training sample drawn from F(x)

| 57, M, 195, 0, 125, 95, 39, 25, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 0 |
|------------------------------------------------------------------------------------------------------------------|---|
| 78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,                                                    | 1 |
| 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0                                                      | 0 |
| 18,M,165,0,110,80,41,30,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                      | 0 |
| 54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0                                              | 1 |
| 84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,                                                  | 0 |
| 89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,                                                   | 1 |
| 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0                                                | 0 |
| 40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                     | 0 |
| 74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,                                                  | 0 |
| 77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0                                                     | 1 |

#### Train Set:

| 57, M, 195, 0, 125, 95, 39, 25, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 0 |
|---------------------------------------------------------------------------------------------------------------|---|
| 78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,                                                 | 1 |
| 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0                                                   | 0 |
| 18,M,165,0,110,80,41,30,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                   | 0 |
| 54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0                                           | 1 |
| 84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,                                               | 0 |
| 89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,                                                | 1 |
| 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,                                                | 0 |
| 40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                  | 0 |
| 74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,                                               | 0 |
| 77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0                                                  | 1 |
|                                                                                                               |   |

Test Set:

?

# F(x): true function (usually not known)D: training sample drawn from F(x)

- 54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0

#### G(x): model learned from training sample D

Goal:  $E < (F(x)-G(x))^2 > is small (near zero) for future test samples drawn from F(x)$ 

## **Decision Trees**



### A Simple Decision Tree



### Representation





### A Real Decision Tree



### A Real Decision Tree

Decision Tree Trained on 1000 Patients:

+833+167 (tree) 0.8327 0.1673 0 fetal\_presentation = 1: +822+116 (tree) 0.8759 0.1241 0 | previous\_csection = 0: +767+81 (tree) 0.904 0.096 0 | primiparous = 0: +399+13 (tree) 0.9673 0.03269 0 | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0 | fetal\_distress = 0: +334+47 (tree) 0.8757 0.1243 0 | | birth\_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0 | | birth\_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0 | fetal\_distress = 1: +34+21 (tree) 0.6161 0.3839 0 | previous\_csection = 1: +55+35 (tree) 0.6099 0.3901 0 fetal\_presentation = 2: +3+29 (tree) 0.1061 0.8939 1 fetal\_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

### Real Data: C-Section Prediction

Demo summary:

Fast Reasonably intelligible Larger training sample => larger tree Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

### Search Space

all possible sequences of all possible tests

very large search space, e.g., if N binary attributes:

- 1 null tree
- N trees with 1 (root) test
- $N^{*}(N-1)$  trees with 2 tests
- N\*(N-1)\*(N-1) trees with 3 tests
- $\approx N^4$  trees with 4 tests

size of search space is exponential in number of attributes

- too big to search exhaustively
- exhaustive search probably would overfit data (too many models)
- so what do we do instead?

### **Top-Down Induction of Decision Trees**

#### a.k.a. Recursive Partitioning

- find "best" attribute test to install at root
- split data on root test
- find "best" attribute tests to install at each new node
- split data on new tests
- repeat until:
  - all nodes are pure
  - all nodes contain fewer than k cases
  - distributions at nodes indistinguishable from chance
  - tree reaches predetermined max depth
  - no more attributes to test





### **Splitting Rules**

Information Gain = reduction in entropy due to splitting on an attribute

Entropy = expected number of bits needed to encode the class of a randomly drawn + or example using the optimal info-theory coding

 $Entropy = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$   $Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{\left|S_{v}\right|}{\left|S\right|} Entropy(S_{v})$ 



### Entropy



### **Splitting Rules**

Problem with Node Purity and Information Gain:

- prefer attributes with many values
- extreme cases:
  - Social Security Numbers
  - patient ID's
  - integer/nominal attributes with many values (JulianDay)



Splitting Rules  $Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$ GainRatio(S, A) = $\frac{|S_v|}{|S|}\log_2$  $S_{v}$  $v \in Values(A)$ 

### Gain\_Ratio Correction Factor





### **Splitting Rules**

#### GINI Index

- Measure of node impurity

$$GINI_{node}(Node) = 1 - \sum_{c \in classes} [p_c]^2$$
$$GINI_{split}(A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} GINI(N_v$$

### Experiment

Randomly select # of cases: 2-1000 Randomly select fraction of +'s and -'s Randomly select attribute arity: 2-1000 Randomly assign cases to branches!!!!! Compute IG, GR, GINI





### Info\_Gain





Gain Ratio





### **GINI Score**





### GINI Score vs. Gain\_Ratio







<sup>©</sup>Tom Mitchell, McGraw Hill, 1997

### Pre-Pruning (Early Stopping)

Evaluate splits before installing them:

- don't install splits that don't look worthwhile
- when no worthwhile splits to install, done
- Seems right, but:
- hard to properly evaluate split without seeing what splits would follow it (use lookahead?)
- some attributes useful only in combination with other attributes
- suppose no single split looks good at root node?

### Post-Pruning

Grow decision tree to full depth (no pre-pruning) Prune-back full tree by eliminating splits that do not appear to be warranted statistically

Use train set, or an independent prune/test set, to evaluate splits

Stop pruning when remaining splits all appear to be warranted

Alternate approach: convert to rules, then prune rules

### Greedy vs. Optimal

#### Optimal

- Maximum expected accuracy (test set)
- Minimum size tree
- Minimum depth tree
- Fewest attributes tested
- Easiest to understand

Test order not always important for accuracy Sometimes random splits perform well

### **Decision Tree Predictions**

Classification Simple probability Smoothed probability Probability with threshold(s)

### Performance Measures

#### Accuracy

- High accuracy doesn't mean good performance
- Accuracy can be misleading
- What threshold to use for accuracy?

Root-Mean-Squared-Error

 $RMSE = \sum_{i=1}^{\#test} (1 - Pred_Prob_i(True_Class_i))^2$ 

Other measures: ROC, Precision/Recall, ...



### Attribute Types

Boolean Nominal Ordinal Integer

Continuous

- Sort by value, then find best threshold for binary split
- Cluster into n intervals and do n-way split

### Missing Attribute Values

Some data sets have many missing values

### Regression Trees vs. Classification

Split criterion: minimize RMSE at node Tree yields discrete set of predictions

$$RMSE = \sum_{i=1}^{\#test} (True_i - Pred_i)^2$$



### **Converting Decision Trees to Rules**

each path from root to a leaf is a separate rule:

fetal\_presentation = 1: +822+116 (tree) 0.8759 0.1241 0 | previous\_csection = 0: +767+81 (tree) 0.904 0.096 0 | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0 | | fetal\_distress = 0: +334+47 (tree) 0.8757 0.1243 0 | | birth\_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0 fetal\_presentation = 2: +3+29 (tree) 0.1061 0.8939 1 fetal\_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

if 
$$(fp=1 \& \neg pc \& primip \& \neg fd \& bw < 3349) => 0$$
,  
if  $(fp=2) => 1$ ,  
if  $(fp=3) => 1$ .

### Advantages of Decision Trees

TDIDT is relatively fast, even with large data sets  $(10^6)$  and many attributes  $(10^3)$ 

advantage of recursive partitioning: only process all cases at root
 Small-medium size trees usually intelligible

Can be converted to rules

TDIDT does feature selection

TDIDT often yields compact models (Occam's Razor) Decision tree representation is understandable

### Decision Trees are Intelligible



### Not ALL Decision Trees Are Intelligible

#### Part of Best Performing C-Section Decision Tree



### Predicting Probabilities with Trees

#### Small Tree

- few leafs
- few discrete probabilities
- Large Tree
  - many leafs
  - few cases per leaf
  - few discrete probabilities
- probability estimates based on small/noisy samples
  What to do?



### A Simple Two-Class Problem















### PET: Probability Estimation Trees

#### Smooth large trees

correct estimates from small samples at leafs

#### Average many trees

- average of many things each with a few discrete values is more continuous
- averages improve quality of estimates

#### Both

### Laplacian Smoothing

Small leaf count: 4+, 1– Maximum Likelihood Estimate: k/N - P(+) = 4/5 = 0.8; P(-) = 1/5 = 0.2?Could easily be 3+, 2- or even 2+, 3-, or worse Laplacian Correction: (k+1)/(N+C)

- P(+) = (4+1)/(5+2) = 5/7 = 0.7143
- P(-) = (1+1)/(5+2) = 2/7 = 0.2857
- If N=0, P(+)=P(-)=1/2
- Bias towards P(class) = 1/C

## Bagging (Model Averaging)

Train many trees with different random samples Average prediction from each tree



Table II. Summary of experimental results: AUC comparisons.

| Systems           | Wins-Ties-Losses | Avg. diff. (%) | Sign test | Wilcoxon test |
|-------------------|------------------|----------------|-----------|---------------|
| C4.4 vs. C4.5     | 18 - 1 - 6       | 2.0            | 1.0       | 0.3           |
| C4.4 vs. C4.5-L   | 13 - 3 - 9       | 0.2            | 30.0      | 30.0          |
| C4.5-L vs. C4.5   | 21 - 2 - 2       | 1.7            | 0.1       | 0.1           |
| C4.5-B vs. C4.5   | 24 - 1 - 0       | 7.3            | 0.1       | 0.1           |
| C4.4-B vs. C4.4   | 23 - 2 - 0       | 5.3            | 0.1       | 0.1           |
| C4.4-B vs. C4.5-B | 11 - 5 - 9       | -0.1           | 45.0      | 50.0          |

- C4.4: no pruning or collapsing
- "L": Laplacian Smoothing
- "B": bagging

### Weaknesses of Decision Trees

- Large or complex trees can be just as unintelligible as other models
- Trees don't easily represent some basic concepts such as M-of-N, parity, non-axis-aligned classes...
- Don't hande real-valued parameters as well as Booleans
- If model depends on summing contribution of many different attributes, DTs probably won't do well DTs that look very different can be same/similar
- Usually poor for predicting continuous values (regression) Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree

### Popular Decision Tree Packages

#### ID3 (ID4, ID5, ...) [Quinlan]

- research code with many variations introduced to test new ideas
- CART: Classification and Regression Trees [Breiman]
  - best known package to people outside machine learning
  - 1st chapter of CART book is a good introduction to basic issues
- C4.5 (C5.0) [Quinlan]
  - most popular package in machine learning community
- both decision trees and rules

#### IND (INDuce) [Buntine]

- decision trees for Bayesians (good at generating probabilities)
- available from NASA Ames for use in U.S.

### When to Use Decision Trees

Regression doesn't work Model intelligibility is important

Problem does not depend on many features

- Modest subset of features contains relevant info
- not vision

Speed of learning is important Linear combinations of features not critical Medium to large training sets

### Current Research

Increasing representational power to include M-of-N splits, non-axis-parallel splits, perceptron-like splits, ...

Handling real-valued attributes better

Using DTs to explain other models such as neural nets

Incorporating background knowledge

TDIDT on really large datasets

- $\rightarrow >> 10^6$  training cases
- $>> 10^3$  attributes

Better feature selection

Unequal attribute costs

Decision trees optimized for metrics other than accuracy