
Supervised Learning

• Decision trees

• Artificial neural nets

• K-nearest neighbor

• Support vectors

• Linear regression

• Logistic regression

• ...

Supervised Learning

• y=F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 1
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0 1
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0 0
40,M,205,0,115,90,37,18,0 0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1 1

…

Supervised Learning

Train Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 1

69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0

18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0

54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 1

84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 0

89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0 1

49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0 0

40,M,205,0,115,90,37,18,0 0

74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0

77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1 1

…

Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ?

Supervised Learning

• F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0 1

• G(x): model learned from training sample D
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ?

• Goal: E<(F(x)-G(x))2> is small (near zero) for
future test samples drawn from F(x)

Decision Trees

A Simple Decision Tree

©Tom Mitchell, McGraw Hill, 1997

Representation

 internal node =
attribute test

 branch =
attribute value

 leaf node =
classification

©Tom Mitchell, McGraw Hill, 1997

A Real Decision Tree

A Real Decision Tree

+833+167 (tree) 0.8327 0.1673 0
fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
| previous_csection = 0: +767+81 (tree) 0.904 0.096 0
| | primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
| | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
| | | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
| | | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
| | | | birth_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
| | | fetal_distress = 1: +34+21 (tree) 0.6161 0.3839 0
| previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

Decision Tree Trained on 1000 Patients:

Real Data: C-Section Prediction

Demo summary:

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

• Fast

• Reasonably intelligible

• Larger training sample => larger tree

• Different training sample => different tree

• all possible sequences of all possible tests
• very large search space, e.g., if N binary attributes:

– 1 null tree
– N trees with 1 (root) test
– N*(N-1) trees with 2 tests
– N*(N-1)*(N-1) trees with 3 tests
– ≈ N4 trees with 4 tests

• size of search space is exponential in number of attributes
– too big to search exhaustively
– exhaustive search probably would overfit data (too many models)
– so what do we do instead?

Search Space

Top-Down Induction of Decision Trees

• a.k.a. Recursive Partitioning

– find “best” attribute test to install at root

– split data on root test

– find “best” attribute tests to install at each new node

– split data on new tests

– repeat until:
• all nodes are pure

• all nodes contain fewer than k cases
• distributions at nodes indistinguishable from chance

• tree reaches predetermined max depth

• no more attributes to test

Find “Best” Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

†

leftnode

Class1
Class1+#Class2

È

Î Í
˘

˚ ˙
•

Class2

Class1+# Class2

È

Î Í
˘

˚ ˙
rightnode

0.6234 0.4412

Splitting Rules

• Information Gain = reduction in entropy due to
splitting on an attribute

• Entropy = expected number of bits needed to
encode the class of a randomly drawn + or –
example using the optimal info-theory coding

Entropy = - p+ log2 p+ - p- log2 p-

Gain(S, A) = Entropy(S) -
Sv
S

Entropy(Sv)
vŒValues(A)

Â

Entropy

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

fraction in class 1

en
tr

op
y

Splitting Rules

• Problem with Node Purity and Information Gain:
– prefer attributes with many values

– extreme cases:
• Social Security Numbers

• patient ID’s

• integer/nominal attributes with many values (JulianDay)

+ – – + – + + –+. . .

Splitting Rules

†

GainRatio(S, A) =

Entropy(S) -
Sv

S
Entropy(Sv)

v ŒValues(A)
Â

-
Sv

S
log2

Sv

Sv ŒValues(A)
Â

Gain_Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 10 20 30 40 50

Number of Splits

Co
rr

ec
tio

n
Fa

ct
or

Splitting Rules

• GINI Index
– Measure of node impurity

†

GINInode (Node) =1- [pc]2

c Œclasses
Â

GINIsplit (A) =
Sv

S
GINI(Nv)

v ŒValues(A)
Â

Experiment

• Randomly select # of cases: 2-1000

• Randomly select fraction of +’s and -’s

• Randomly select attribute arity: 2-1000

• Randomly assign cases to branches!!!!!

• Compute IG, GR, GINI

. . .

741 cases: 309+, 432-

random arity

Info_Gain
P

oo
r

Sp
lit

s

 G

oo
d

Sp
lit

s

Gain_Ratio
P

oo
r

Sp
lit

s

 G

oo
d

Sp
lit

s

GINI Score
G

oo
d

Sp
lit

s

 P

oo
r

Sp
lit

s

Info_Gain vs. Gain_Ratio

GINI Score vs. Gain_Ratio

Overfitting

©Tom Mitchell, McGraw Hill, 1997

Pre-Pruning (Early Stopping)

• Evaluate splits before installing them:
– don’t install splits that don’t look worthwhile

– when no worthwhile splits to install, done

• Seems right, but:
– hard to properly evaluate split without seeing what

splits would follow it (use lookahead?)

– some attributes useful only in combination with other
attributes

– suppose no single split looks good at root node?

Post-Pruning

• Grow decision tree to full depth (no pre-pruning)

• Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

• Use train set, or an independent prune/test set, to
evaluate splits

• Stop pruning when remaining splits all appear to
be warranted

• Alternate approach: convert to rules, then prune
rules

Greedy vs. Optimal

• Optimal
– Maximum expected accuracy (test set)

– Minimum size tree

– Minimum depth tree

– Fewest attributes tested
– Easiest to understand

• Test order not always important for accuracy

• Sometimes random splits perform well

Decision Tree Predictions

• Classification

• Simple probability

• Smoothed probability

• Probability with threshold(s)

Performance Measures

• Accuracy
– High accuracy doesn’t mean good performance

– Accuracy can be misleading

– What threshold to use for accuracy?

• Root-Mean-Squared-Error

• Other measures: ROC, Precision/Recall, …

†

RMSE = (1- Pred_Probi(True_Classi)
i=1

test

Â)2

Attribute Types

• Boolean

• Nominal

• Ordinal

• Integer

• Continuous
– Sort by value, then find best threshold for binary split

– Cluster into n intervals and do n-way split

Missing Attribute Values

• Some data sets have many missing values

Regression Trees vs. Classification

• Split criterion: minimize RMSE at node

• Tree yields discrete set of predictions

†

RMSE = (Truei
i=1

test

Â -Predi)
2

Converting Decision Trees to Rules

• each path from root to a leaf is a separate rule:

if (fp=1 & ¬pc & primip & ¬fd & bw<3349) => 0,

if (fp=2) => 1,

if (fp=3) => 1.

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
| previous_csection = 0: +767+81 (tree) 0.904 0.096 0
| | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
| | | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
| | | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

Advantages of Decision Trees

• TDIDT is relatively fast, even with large data sets (106)
and many attributes (103)
– advantage of recursive partitioning: only process all cases at root

• Small-medium size trees usually intelligible

• Can be converted to rules

• TDIDT does feature selection

• TDIDT often yields compact models (Occam’s Razor)

• Decision tree representation is understandable

Decision Trees are Intelligible

Not ALL Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree

Predicting Probabilities with Trees

• Small Tree
– few leafs
– few discrete probabilities

• Large Tree
– many leafs
– few cases per leaf
– few discrete probabilities
– probability estimates based on small/noisy samples

• What to do?

A Simple Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Predicting Probs

From Provost, Domingos pet-mlj 2002

A Harder Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Prob Prediction

From Provost, Domingos pet-mlj 2002

PET: Probability Estimation Trees

• Smooth large trees
– correct estimates from small samples at leafs

• Average many trees
– average of many things each with a few discrete values

is more continuous

– averages improve quality of estimates

• Both

Laplacian Smoothing

• Small leaf count: 4+, 1–
• Maximum Likelihood Estimate: k/N

– P(+) = 4/5 = 0.8; P(–) = 1/5 = 0.2?

• Could easily be 3+, 2- or even 2+, 3-, or worse
• Laplacian Correction: (k+1)/(N+C)

– P(+) = (4+1)/(5+2) = 5/7 = 0.7143
– P(–) = (1+1)/(5+2) = 2/7 = 0.2857
– If N=0, P(+)=P(–) = 1/2
– Bias towards P(class) = 1/C

Bagging (Model Averaging)

• Train many trees with different random samples

• Average prediction from each tree

Results

From Provost, Domingos pet-mlj 2002

C4.4: no pruning or collapsing
“L”: Laplacian Smoothing
“B”: bagging

Weaknesses of Decision Trees

• Large or complex trees can be just as unintelligible as
other models

• Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes…

• Don’t hande real-valued parameters as well as Booleans

• If model depends on summing contribution of many
different attributes, DTs probably won’t do well

• DTs that look very different can be same/similar

• Usually poor for predicting continuous values (regression)

• Propositional (as opposed to 1st order)

• Recursive partitioning: run out of data fast as descend tree

Popular Decision Tree Packages

• ID3 (ID4, ID5, …) [Quinlan]
– research code with many variations introduced to test new ideas

• CART: Classification and Regression Trees [Breiman]
– best known package to people outside machine learning
– 1st chapter of CART book is a good introduction to basic issues

• C4.5 (C5.0) [Quinlan]
– most popular package in machine learning community
– both decision trees and rules

• IND (INDuce) [Buntine]
– decision trees for Bayesians (good at generating probabilities)
– available from NASA Ames for use in U.S.

When to Use Decision Trees

• Regression doesn’t work

• Model intelligibility is important

• Problem does not depend on many features
– Modest subset of features contains relevant info

– not vision

• Speed of learning is important

• Linear combinations of features not critical

• Medium to large training sets

Current Research

• Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, …

• Handling real-valued attributes better

• Using DTs to explain other models such as neural nets

• Incorporating background knowledge

• TDIDT on really large datasets
– >> 106 training cases

– >> 103 attributes

• Better feature selection

• Unequal attribute costs

• Decision trees optimized for metrics other than accuracy

