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Following Page 12 to 13 in the slides, given a dataset D = {(xi, yi)}, where
xi is a p-Dimensional feature vector, yi is the class label taking values from
{C1, C2, . . . , Cm}, the goal is to find the best parameters P (Cj) and P (Xk =
v|Cj) that can maximize the likelihood of the observed dataset:

L =
∏
i

P (xi, yi) =
∏
i

P (xi|yi)P (yi) =
∏
i

(
∏
k

P (xik|yi))P (yi)

=
∏
i

(
∏
k

P (xik|yi))
∏
j

P (Cj)
1(yi=Cj)

(1)

where 1 is the indicator function, which equals to 1 if the predicate holds,
otherwise, 0.

This is equivalent to maximize log-likelihood:

logL =
∑
i

∑
k

log(P (xik|yi)) +
∑
i

∑
j

1(yi = Cj) log(P (Cj)) (2)

Now we can see that if we want to estimate P (Cj), the first part of the
log-likelihood function is irrelevant, as it does not contain P (Cj). Note that, we
have a constraint on P (Cj), which is

∑
j P (Cj) = 1. We can use the method

of Lagrange multipliers to solve the problem, which makes us to maximize the
following Lagrange function:

J =
∑
i

∑
j

1(yi = Cj) log(P (Cj)) + λ(
∑
j

P (Cj)− 1) (3)

By taking the first derivative respective to P (Cj) and set it to 0, we have

∇P (Cj)J =
∑
i

1(yi = Cj)

P (Cj)
+ λ = 0 (4)

We can then get −λ =
∑

i

∑
j 1(yi = Cj) =

∑
i = |D|, the total number

of objects in the dataset. By plugging in λ, we can get P (Cj) =
∑

i 1(yi=Cj)

|D| =
|Cj,D|
|D| , where |Cj,D| denotes the total number of objects in D that belong to

class Cj .
Other notes on parameter derivation:
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• http://www.cs.columbia.edu/~mcollins/em.pdf

• http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/NB.

pdf
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