
Constituency Parsing

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview
• The constituency parsing problem
• CKY parsing

– Chomsky Normal Form
• The Penn Treebank

Constituency (Phrase Structure)
Trees

• Phrase structure organizes words into
nested constituents

Constituency (Phrase Structure)
Trees

• Phrase structure organizes words into
nested constituents

• Linguists can, and do, argue about details

Constituency Tests
• Distribution: a constituent behaves as a

unit that can appear in different places:
– John talked to the children about drugs.
– John talked [to the children] [about drugs].
– John talked [about drugs] [to the children].
– *John talked drugs to the children about

Constituency Tests
• Substitution/expansion/pro-forms:

– I sat near the table
– I sat [on the box/right on top of the box/there].

Constituency Tests
• Distribution / movement / dislocation
• Substitution by pro-form

– he, she, it, they, ...
• Question / answer
• Deletion
• Conjunction / coordination

Constituency (Phrase Structure)
Trees

• Phrase structure organizes words into
nested constituents

• Linguists can, and do, argue about details
• Lots of ambiguity

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Context-Free Grammars (CFG)
• Writing parsing rules:

– N à Fed
– V à raises
– NP à N
– S à NP VP
– VP à V NP
– NP à N N
– NP à NP PP
– N à interest
– N à raises

Context-Free Grammars
• A context-free grammar is a tuple <N, Σ , S, R>

– N : the set of non-terminals
• Phrasal categories: S, NP, VP, ADJP, etc.
• Parts-of-speech (pre-terminals): NN, JJ, DT, VB

– Σ : the set of terminals (the words)
– S : the start symbol

• Often written as ROOT or TOP
• Not usually the sentence non-terminal S – why not?

– R : the set of rules
• Of the form X → Y1 Y2 … Yn, with X ∈ N, n≥0, Yi∈ (N ∪ Σ)
• Examples: S → NP VP, VP → VP CC VP
• Also called rewrites, productions, or local trees

Example GrammarA Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Example Parse

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

The man sleeps
NNDT Vi

VPNP

S

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Example Parse

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

The man sleeps
NNDT Vi

VPNP

S

The man saw the woman with the telescope

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Example Parse

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

A Context-Free Grammar for English
N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

13

The man sleeps
NNDT Vi

VPNP

S

NNDT

NP

NNDT

NP

NNDT

NPVt

VP

IN

PP

VP

S

The man saw the woman with the telescope

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Headed Phrase Structure
• In NLP, CFG non-terminals often have

internal structure
• Phrases are headed by particular word types

with some modifiers:
– VP à … VB* …
– NP à … NN* …
– ADJP à … JJ* …
– ADVP à … RB* …

• This X-bar theory grammar (in a nutshell)
• This captures a dependency

Pre 1990 (“Classical”) NLP Parsing
• Wrote symbolic grammar (CFG or often richer) and lexicon

S ® NP VP NN ® interest
NP ® (DT) NN NNS ® rates
NP ® NN NNS NNS ® raises
NP ® NNP VBP ® interest
VP ® V NP VBZ ® rates

• Used grammar/proof systems to prove parses from words
• This scaled very badly and didn’t give coverage. For

sentence:
Fed raises interest rates 0.5% in effort to control inflation
– Minimal grammar: 36 parses
– Simple 10 rule grammar: 592 parses
– Real-size broad-coverage grammar: millions of parses

Ambiguities: PP Attachment
The children ate the cake with a spoon.

Attachments

• I cleaned the dishes from dinner

• I cleaned the dishes with detergent

• I cleaned the dishes in my pajamas

• I cleaned the dishes in the sink

Syntactic Ambiguity I
• Prepositional phrases:

They cooked the beans in the pot on the stove with
handles.

• Particle vs. preposition:
The puppy tore up the staircase.

• Complement structures
The tourists objected to the guide that they couldn’t
hear.
She knows you like the back of her hand.

• Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused
passengers.

Syntactic Ambiguity II
• Modifier scope within NPs

impractical design requirements
plastic cup holder

• Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

• Coordination scope:
Small rats and mice can squeeze into
holes or cracks in the wall.

Classical NLP Parsing:
The problem and its solution

• Categorical constraints can be added to grammars to
limit unlikely/weird parses for sentences
– But the attempt make the grammars not robust

• In traditional systems, commonly 30% of sentences in even an
edited text would have no parse.

• A less constrained grammar can parse more
sentences
– But simple sentences end up with ever more parses with

no way to choose between them
• We need mechanisms that allow us to find the most

likely parse(s) for a sentence
– Statistical parsing lets us work with very loose grammars

that admit millions of parses for sentences but still quickly
find the best parse(s)

The rise of annotated data:
The Penn Treebank (PTB)

((S
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))

(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))

(, ,)
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)
(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)
(NP (DT that) (NN market)))))))

(. .)))

[Marcus et al. 1993]

The rise of annotated data
• Starting off, building a treebank seems a lot

slower and less useful than building a
grammar

• But a treebank gives us many things
– Reusability of the labor

• Many parsers, POS taggers, etc.
• Valuable resource for linguistics

– Broad coverage
– Frequencies and distributional information
– A way to evaluate systems

PTB Non-terminals
THE PENN TREEBANK: AN OVERVIEW 9

Table 1.2. The Penn Treebank syntactic tagset

ADJP Adjective phrase
ADVP Adverb phrase
NP Noun phrase
PP Prepositional phrase
S Simple declarative clause
SBAR Subordinate clause
SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase
WHADVP Wh-adverb phrase
WHNP Wh-noun phrase
WHPP Wh-prepositional phrase
X Constituent of unknown or uncertain category

“Understood” subject of infinitive or imperative
0 Zero variant of that in subordinate clauses
T Trace of wh-Constituent

Predicate-argument structure. The new style of annotation provided
three types of information not included in the first phase.

1 A clear, concise distinction between verb arguments and adjuncts where
such distinctions are clear, with an easy-to-use notational device to indi-
cate where such a distinction is somewhat murky.

2 A non-context free annotational mechanism to allow the structure of dis-
continuous constituents to be easily recovered.

3 A set of null elements in what can be thought of as “underlying” posi-
tion for phenomena such as wh-movement, passive, and the subjects of
infinitival constructions, co-indexed with the appropriate lexical mate-
rial.

The goal of a well-developed predicate-argument scheme is to label each
argument of the predicate with an appropriate semantic label to identify its
role with respect to that predicate (subject, object, etc.), as well as distinguish-
ing the arguments of the predicate, and adjuncts of the predication. Unfortu-
nately, while it is easy to distinguish arguments and adjuncts in simple cases,
it turns out to be very difficult to consistently distinguish these two categories
for many verbs in actual contexts. It also turns out to be very difficult to de-
termine a set of underlying semantic roles that holds up in the face of a few

+ all POS tags

Non Local Phenomena
• Dislocation / gapping

– Which book should Peter buy?
– A debate arose which continued until the

election.

• Binding
– Reference

• The IRS audits itself
• Control

– I want to go
– I want you to go

PTB Size
• Penn WSJ Treebank:

– 50,000 annotated sentences
• Usual set-up:

– 40,000 training
– 2,400 test

Data for Parsing Experiments

I
Penn WSJ Treebank = 50,000 sentences with associated trees

I
Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,

mainly from its natural gas and electric utility businesses in

Alberta , where the company serves about 800,000

customers .

Probabilistic Context-Free
Grammars (PCFG)

• A context-free grammar is a tuple <N, Σ , S, R>
– N : the set of non-terminals

• Phrasal categories: S, NP, VP, ADJP, etc.
• Parts-of-speech (pre-terminals): NN, JJ, DT, VB

– Σ : the set of terminals (the words)
– S : the start symbol

• Often written as ROOT or TOP
• Not usually the sentence non-terminal S

– R : the set of rules
• Of the form X → Y1 Y2 … Yn, with X ∈ N, n≥0, Yi∈ (N ∪ Σ)
• Examples: S → NP VP, VP → VP CC VP
• Also called rewrites, productions, or local trees

• A PCFG adds a distribution q:
– Probability q(r) for each r ∈ R, such that for all X ∈ N:

Why is this a useful problem? A crucial idea is that once we have a function
p(t), we have a ranking over possible parses for any sentence in order of probabil-
ity. In particular, given a sentence s, we can return

arg max
t∈TG(s)

p(t)

as the output from our parser—this is the most likely parse tree for s under the
model. Thus if our distribution p(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effective way of dealing with
ambiguity.

This leaves us with the following questions:

• How do we define the function p(t)?

• How do we learn the parameters of our model of p(t) from training exam-
ples?

• For a given sentence s, how do we find the most likely tree, namely

arg max
t∈TG(s)

p(t)?

This last problem will be referred to as the decoding or parsing problem.

In the following sections we answer these questions through defining proba-
bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs

Probabilistic context-free grammars (PCFGs) are defined as follows:

Definition 1 (PCFGs) A PCFG consists of:

1. A context-free grammar G = (N,Σ, S,R).

2. A parameter
q(α → β)

for each rule α → β ∈ R. The parameter q(α → β) can be interpreted as
the conditional probabilty of choosing rule α → β in a left-most derivation,
given that the non-terminal being expanded is α. For any X ∈ N , we have
the constraint

∑

α→β∈R:α=X

q(α → β) = 1

In addition we have q(α → β) ≥ 0 for any α → β ∈ R.

7

PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

The man sleeps

The man saw the woman with the telescope

PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

The man sleeps

The man saw the woman with the telescope

NNDT Vi

VPNP

NNDT

NP

NNDT

NP

NNDT

NPVt

VP

IN

PP

VP

S

S

t1=

p(t1)=1.0*0.3*1.0*0.7*0.4*1.0

1.0

0.40.3

1.0 0.7 1.0

t2=

p(ts)=1.0*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1

1.0

0.3 0.3 0.3

0.2

0.4 0.4

0.51.0

1.0 1.0 1.00.7 0.2 0.1

Learning and Inference
• Model

– The probability of a tree t with n rules αi à βi, i = 1..n

• Learning
– Read the rules off of labeled sentences, use ML estimates for

probabilities

– and use all of our standard smoothing tricks!

• Inference
– For input sentence s, define T(s) to be the set of trees whose yield is s

(whose leaves, read left to right, match the words in s)

p(t) =
nY

i=1

q(�i ! ⇥i)

qML(� ! ⇥) =
Count(� ! ⇥)

Count(�)

t�(s) = arg max
t⇥T (s)

p(t)

The Constituency Parsing Problem

fish people fish tanks

Rule Prob θi
S ® NP VP θ0

NP ® NP NP θ1

…

N ® fish θ42

N ® peopleθ43

V ® fish θ44

…

PCFG

N N V N

VP

NPNP

S

A Recursive Parser

• Will this parser work?
• Why or why not?
• Q: Remind you of anything? Can we adapt

this to other models / inference tasks?

bestScore(X,i,j,s)
if (j == i)

return q(X->s[i])
else

return max q(X->YZ) *
bestScore(Y,i,k,s) *
bestScore(Z,k+1,j,s)

Cocke-Kasami-Younger (CKY)
Constituency Parsing

fish people fish tanks

Cocke-Kasami-Younger (CKY)
Constituency Parsing

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
VP ® V NP 0.5
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
PP ® P NP 1.0

Cocke-Kasami-Younger (CKY)
Constituency Parsing

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
VP ® V NP 0.5
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
PP ® P NP 1.0

S 0.0189

Cocke-Kasami-Younger (CKY)
Constituency Parsing

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
VP ® V NP 0.5
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
PP ® P NP 1.0

S 0.0189
NP 0.0098

Cocke-Kasami-Younger (CKY)
Constituency Parsing

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
VP ® V NP 0.5
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
PP ® P NP 1.0

S 0.0189
NP 0.0098
VP 0.007

CKY Parsing
• We will store: score of the max parse of xi to

xj with root non-terminal X

• So we can compute the most likely parse:

• Via the recursion:

• With base case:

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

= argmax

t
2 TG(x)

The CKY Algorithm
• Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
• Initialization: For i = 1 … n and all X in N

• For l = 1 … (n-1) [iterate all phrase lengths]
– For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

• For all X in N [iterate all non-terminals]

• also, store back pointers

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

Input: a sentence s = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

Probabilistic CKY Parser
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me

0.1 0.02 0.02 0.06
NP → Houston | NWA

0.16 .04
Det→ the | a | an

0.6 0.1 0.05
NP → Det Nominal
Nominal → book | flight | meal | money

0.03 0.15 0.06 0.06
Nominal → Nominal Nominal
Nominal → Nominal PP
Verb→ book | include | prefer

0.5 0.04 0.06
VP → Verb NP
VP → VP PP
Prep → through | to | from

0.2 0.3 0.3
PP → Prep NP

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3

1.0

Probabilistic CKY Parser
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me

0.1 0.02 0.02 0.06
NP → Houston | NWA

0.16 .04
Det→ the | a | an

0.6 0.1 0.05
NP → Det Nominal
Nominal → book | flight | meal | money

0.03 0.15 0.06 0.06
Nominal → Nominal Nominal
Nominal → Nominal PP
Verb→ book | include | prefer

0.5 0.04 0.06
VP → Verb NP
VP → VP PP
Prep → through | to | from

0.2 0.3 0.3
PP → Prep NP

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3

1.0

S :.01,
Verb:.5
Nominal:.03

Det:.6

Nominal:.15

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.03*.0135*.032
=.00001296

S:.05*.5*
.000864

=.0000216

Probabilistic CKY Parser

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.0000216

Pick most
probable
parse

S :.01,
Verb:.5
Nominal:.03

Det:.6

Nominal:.15

Prep:.2

NP:.16

S:.03*.0135*.032
=.00001296

The CKY Algorithm
• Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
• Initialization: For i = 1 … n and all X in N

• For l = 1 … (n-1) [iterate all phrase lengths]
– For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

• For all X in N [iterate all non-terminals]

• also, store back pointers

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

Input: a sentence s = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

Time: Theory
• For each length (<= n)

– For each i (<= n)
• For each split point k

– For each rule X → Y Z
» Do constant work

• Total time: |rules|*n3

Y Z

X

i k j

Time: Practice
• Parsing with the vanilla treebank grammar:

• Why’s it worse in practice?
– Longer sentences “unlock” more of the grammar
– All kinds of systems issues don’t scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

The CKY Algorithm
• Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
• Initialization: For i = 1 … n and all X in N

• For l = 1 … (n-1) [iterate all phrase lengths]
– For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

• For all X in N [iterate all non-terminals]

• also, store back pointers

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

Input: a sentence s = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

Memory
• How much memory does this require?

– Have to store the score cache
– Cache size:

• |symbols|*n2 doubles
• Pruning: Beams

– score[X][i][j] can get too large (when?)
– Can keep beams (truncated maps score[i][j])

which only store the best few scores for the span
[i,j] – Exact?

• Pruning: Coarse-to-Fine
– Use a smaller grammar to rule out most X[i,j]

Let’s parse with CKY!
• Any problem?

Data for Parsing Experiments

I
Penn WSJ Treebank = 50,000 sentences with associated trees

I
Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,

mainly from its natural gas and electric utility businesses in

Alberta , where the company serves about 800,000

customers .

Chomsky Normal Form
• All rules are of the form X ® Y Z or X ® w

– X, Y, Z ∈ N and w ∈ T
• A transformation to this form doesn’t change the weak generative

capacity of a CFG
– That is, it recognizes the same language

• But maybe with different trees
• Empties and unaries are removed recursively
• n-ary rules are divided by introducing new nonterminals (n > 2)

VP

[VP → VBD NP •]

VBD NP PP PP

[VP → VBD NP PP •]

VBD NP PP PP

VP

Special Case: Unary Rules
• Chomsky normal form (CNF):

– All rules of the form X → Y Z or X → w
– Makes parsing easier!

• Can also allow unary rules
– All rules of the form X → Y Z, X → Y, or X → w
– Conversion to/from the normal form is easier
– Q: How does this change CKY?
– WARNING: Watch for unary cycles…

CKY with Unary Rules
• Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
• Initialization: For i = 1 … n:

– Step 1: for all X in N:

– Step 2: for all X in N:

• For l = 1 … (n-1) [iterate all phrase lengths]
– For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

• Step 1: (Binary)
– For all X in N [iterate all non-terminals]

• Step 2: (Unary)
– For all X in N [iterate all non-terminals]

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12⇡B(i, j,X) = max

X!Y Z2R,s2{i...(j�1)}
(q(X ! Y Z)⇥ ⇡U (i, s, Y)⇥ ⇡U (s+ 1, j, Z)

⇡U (i, i,X) = max

X!Y 2R
(q(X ! Y)⇥ ⇡(i, i, Y))

⇡U (i, j,X) = max

X!Y 2R
(q(X ! Y)⇥ ⇡B(i, j, Y))

Must always have
one and exactly
one unary rule!

Unary Closure
• Rather than zero or more unaries, always exactly one
• Calculate closure Close(R) for unary rules in R

– Add X→Y if there exists a rule chain X→Z1, Z1→Z2,..., Zk
→Y with q(X→Y) = q(X→Z1)*q(Z1→Z2)*…*q(Zk →Y)

– Add X→X with q(X→X)=1 for all X in N

• In CKY and chart: Alternate unary and binary layers
• Reconstruct unary chains afterwards (with extra

marking)

NP

DT NN

VP

VBD
NP

DT NN

VBD NP

VP

S

SBAR

VP

SBAR
VP

Other Chart Computations
• Max inside score

– Score of the max parse of xi to xj with root X

– Marginalize over internal structure
• Max outside score
• Sum inside/outside

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.

12

i k k+1 j

k i-1 i j

Other Chart Computations
• Max inside score
• Max outside score

– Score of max parse of the
complete span with a gap
between i and j

– Details in notes
• Sum inside/outside

i k k+1 j

k i-1 i j

Other Chart Computations
• Max inside score
• Max outside score
• Sum inside/outside

– Do sums instead of
maxes

i k k+1 j

k i-1 i ji k k+1 j

k i-1 i j

Just Like Sequences
• Locally normalized:

– Generative
– MaxEnt

• Globally normalized:
– CRFs

• Additive, un-normalized:
– Perceptron

Treebank Parsing
((S

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))

(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))

(, ,)
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)
(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)
(NP (DT that) (NN market)))))))

(. .)))

[Marcus et al. 1993]

Treebank Grammars
• Need a PCFG for broad coverage parsing.
• Can take a grammar right off the trees:

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Typical Experimental Setup
• The Penn Treebank is divided into

sections:
– Training: sections 2-18
– Development: section 22 (also 0-1 and 24)
– Testing: section 23

• Evaluation?

Evaluating Constituency Parsing

Evaluating Constituency Parsing

• Recall:
– Recall = (# correct constituents in candidate) / (# constituents in

gold)
• Precision:

– Precision = (# correct constituents in candidate) / (#
constituents in candidate)

• Labeled Precision and labeled recall require getting the
non-terminal label on the constituent node correct to
count as correct.

• F1 is the harmonic mean of precision and recall.
– F1= (2 * Precision * Recall) / (Precision + Recall)

Evaluating Constituency Parsing
Gold standard brackets:
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-
(6-9), NP-(7,9), NP-(9:10)
Candidate brackets:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6),
PP-(6-10), NP-(7,10)

• Precision: 3/7 = 42.9%
• Recall: 3/8 = 37.5%
• F1: 40%
• Also, tagging accuracy: 11/11 = 100%

How Good are PCFGs?

• Robust
– Usually admit everything, but with low probability

• Partial solution for grammar ambiguity
– A PCFG gives some idea of the plausibility of a parse
– But not so good because the independence assumptions are

too strong
• Give a probabilistic language model

– But in the simple case it performs worse than a trigram model
• The problem seems to be that PCFGs lack the lexicalization

of a trigram model

Penn WSJ parsing performance:
~ 73% F1

The Missing Information?

NNDT

NP

NNDT

NP

NNDT

NPVt

VP

IN

PP

VP

S

The man saw the woman with the hat

Extra Slides

Chomsky Normal Form
• All rules are of the form X ® Y Z or X ® w

– X, Y, Z ∈ N and w ∈ T
• A transformation to this form doesn’t change

the weak generative capacity of a CFG
– That is, it recognizes the same language

• But maybe with different trees

• Empties and unaries are removed recursively
• n-ary rules are divided by introducing new

nonterminals (n > 2)

Example: Before Binarization
ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N N

Example: After Binarization

P NP

rods

N

with

NP

N

people tanksfish

N

VP

V NP PP

@VP_V

ROOT

S

A Phrase Structure Grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 1: Remove epsilon rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 1: Remove epsilon rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 1: Remove epsilon rules

Recognizing the
same language?
For every rule
with NP, create a
unary rule

Chomsky Normal Form

S ® NP VP
S ® VP
VP ® V NP
VP ® V
VP ® V NP PP
VP ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 1: Remove epsilon rules

Chomsky Normal Form

S ® NP VP
S ® VP
VP ® V NP
VP ® V
VP ® V NP PP
VP ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
S ® VP
VP ® V NP
VP ® V
VP ® V NP PP
VP ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
S ® VP
VP ® V NP
VP ® V
VP ® V NP PP
VP ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Recognizing the
same language?
Work your way
down to
propagate

Chomsky Normal Form

S ® NP VP
S ® VP
VP ® V NP
VP ® V
VP ® V NP PP
VP ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Recognizing the
same language?
Work your way
down to
propagate

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V
S ® V
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Just added a
unary rule!
Need to apply
until they are all
gone

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V
S ® V
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Just added a
unary rule!
Need to apply
until they are all
gone

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Recognizing the
same language?
Yes!

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Only place N
appears
So can get rid of
it altogether

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® PP
PP ® P NP
PP ® P

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® PP
PP ® P NP
PP ® P

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
V ® fish
V ® tanks
P ® with

Step 2: Remove unary rules

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® P NP
PP ® P NP

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ® with
PP ® with

Step 2: Binarize

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® P NP
PP ® P NP

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ® with
PP ® with

Step 2: Binarize

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V @VP_V
@VP_V ® NP PP
S ® V @S_V
@S_V ® NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® P NP
PP ® P NP

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ® with
PP ® with

Step 2: Binarize

Chomsky Normal Form: Source

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form

S ® NP VP
VP ® V NP
S ® V NP
VP ® V @VP_V
@VP_V ® NP PP
S ® V @S_V
@S_V ® NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP PP
NP ® P NP
PP ® P NP

NP ® people
NP ® fish
NP ® tanks
NP ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ® with
PP ® with

Chomsky Normal Form
• You should think of this as a transformation for efficient

parsing
• With some extra book-keeping in symbol names, you can

even reconstruct the same trees with a detransform
• In practice full Chomsky Normal Form is a pain

– Reconstructing n-aries is easy
– Reconstructing unaries/empties is trickier

• Binarization is crucial for cubic time CFG parsing

• The rest isn’t necessary; it just makes the algorithms cleaner
and a bit quicker

Treebank: empties and unaries

ROOT

S-HLN

NP-SUBJ VP

VB-NONE-

e Atone

PTB Tree

ROOT

S

NP VP

VB-NONE-

e Atone

NoFuncTags

ROOT

S

VP

VB

Atone

NoEmpties

ROOT

S

Atone

NoUnaries

ROOT

VB

Atone

High Low

