CS5740: Natural Language Processing
Spring 2017

Constituency Parsing

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview

* The constituency parsing problem
« CKY parsing

— Chomsky Normal Form
* The Penn Treebank

Constituency (Phrase Structure)
Trees

» Phrase structure organizes words into
nested constituents

N \Y

Fed raises N N

interest rates

Constituency (Phrase Structure)
Trees

» Phrase structure organizes words into
nested constituents

* Linguists can, and do, argue about detalils

S

NP VP
N V NP

| PN

Fed raises N N

interest rates

Constituency Tests

 Distribution: a constituent behaves as a
unit that can appear in different places:
— John talked to the children about drugs.

— John talked [to the children] [about drugs].
— John talked [about drugs] [to the children].
— *John talked drugs to the children about

Constituency Tests

« Substitution/expansion/pro-forms:
— | sat near the table
— | sat [on the box/right on top of the box/there].

Constituency Tests

Distribution / movement / dislocation

Substitution by pro-form
— he, she, It, they, ...
Question / answer
Deletion

Conjunction / coordination

Constituency (Phrase Structure)
Trees
» Phrase structure organizes words into
nested constituents
* Linguists can, and do, argue about detalls
» Lots of ambiguity

S

new art critics write reviews with computers

Context-Free Grammars (CFG)

S

» Writing parsing rules: P
NP VP

— N =2 Fepl Py
— \V = raises N OV NP
- NP % N Fed rai|ses N/\N
-S> NPVP | |
_ \/P 9 V ND interest rates
— NP =2 N N

NP 2 NP PP
— N = Interest
N = raises

Context-Free Grammars

« A context-free grammar is a tuple <N, 2, S, R>

— N : the set of non-terminals
« Phrasal categories: S, NP, VP, ADJP, etc.
« Parts-of-speech (pre-terminals): NN, JJ, DT, VB
— 2 : the set of terminals (the words)
— S : the start symbol
« Often written as ROOT or TOP
« Not usually the sentence non-terminal S — why not?
— R :the set of rules
« Oftheform X =>Y,Y,...Y, withX € N, n20, Y; € (N U 2)
 Examples: S > NP VP, VP > VP CC VP
» Also called rewrites, productions, or local trees

Example Grammar

N ={S,NP, VP, PP, DT, Vi, Vt, NN, IN}

S =S
>, = {sleeps, saw, man, woman, telescope, the, with, in}
R =3 —~ NP VP Vi = sleeps
: Vt = saw
Vb= Wi NN = man
Vb= Vi NP NN = woman
VP = VP PP NN = telescope
NP = DT NN ST ——re b
NP = NP PP N = m
PP — IN NP W
IN = 1n

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vi=transitive verb, NN=noun, IN=preposition

R=S

=~ ve| Example Parse
VP = Wi S
VP = Vt NP NP P
VP = VP PP A\ |
NP = DT NN DIT '\:N \I/i
NP = NP PP The man sleeps
PP = IN NP
Vi = sleeps
Vt = saw
NN = man
NN = woman
NN = telescope
DT = the
IN = with
IN = 1m

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

R=S

=~ ve| Example Parse
VP = Wi S
VP = Vt NP NP P
VP = VP PP A\ |
NP = DT NN DIT '\:N \I/i
NP = NP PP The man sleeps
PP = IN NP
Vi = sleeps
Vt = saw
NN = man
NN = woman
NN = telescope
DT = the
IN = with |
IN = in The man saw the woman with the telescope

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

R=S = NP VP
VP = Wi
VP = Vt NP
VP = VP PP
NP = DT NN
NP = NP PP
PP = IN NP
Vi = sleeps
Vt = saw
NN = man
NN = woman
NN = telescope
DT = the
IN = with
IN = 1in

Example Parse
S

/\
NP VP

N\ I

DT NN Vi

| | I
The man sleeps

S
VP
/\
VP PP
-\ N\
NP Vi NP IN NP
N\ -\ VN
DIT I\:N DIT NN DT NN

I | |
The man saw the woman with the telescope

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Headed Phrase Structure

In NLP, CFG non-terminals often have
iInternal structure

Phrases are headed by particular word types
with some modifiers:

- VP > ... VB™ ...

— NP = ... NN* ...

— ADJP = ... JJ* ...

— ADVP = ... RB™ ...

This X-bar theory grammar (in a nutshell)
This captures a dependency

Pre 1990 (“Classical”) NLP Parsing

« Wrote symbolic grammar (CFG or often richer) and lexicon

S—> NPVP NN — interest
NP — (DT) NN NNS — rates
NP — NN NNS NNS — raises
NP — NNP VBP — interest
VP - V NP VBZ — rates

« Used grammar/proof systems to prove parses from words

« This scaled very badly and didn’t give coverage. For
sentence:
Fed raises interest rates 0.5% in effort to control inflation
— Minimal grammar: 36 parses
— Simple 10 rule grammar: 592 parses
— Real-size broad-coverage grammar: millions of parses

Ambiguities: PP Attachment

The children ate the cake with a spoon.

S S
/\ /\
NP VP
/\ /\ /\ | /\\\
DT NNS PP I]I N?s \Tn ‘/i{\\
| | ///\\\ ///\\\ The children ate NF \FP
The children VBD NP A\ ////~\\\\
| //A\\ | ///\\\ DT NN NP
ate DT NN with DT NN /\
| ‘ | ‘ the cake with DT NN
the cake a spoon

a spoon

The board approved [it\acquisitionNby Royal Trustco Ltd.]

of Toronto]

[for $27 a share]

at its monthly meeting].

Attachments

| cleaned the dishes from dinner
| cleaned the dishes with detergent
| cleaned the dishes in my pajamas

| cleaned the dishes in the sink

Syntactic Ambiguity |

Prepositional phrases: |
They cooked the beans in the pot on the stove with
nandles.

Particle vs. preposition:
The puppy tore up the staircase.

Complement structures

The tourists objected to the guide that they couldn’t
hear.

She knows you like the back of her hand.

Gerund vs. participial adjective

Visiting relatives can be boring.
Changing schedules frequently confused
passengers.

Syntactic Ambiguity

* Modifier scope within NPs
impractical design requirements
plastic cup holder

* Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

» Coordination scope:
Small rats and mice can squeeze into
holes or cracks Iin the wall.

Classical NLP Parsing:

The problem and its so

ution

« (Categorical constraints can be added to grammars to

limit unlikely/weird parses for sentences

— But the attempt make the grammars not robust
 In traditional systems, commonly 30% of sentences in even an

edited text would have no parse.

* A less constrained grammar can parse more

sentences

— But simple sentences end up with ever more parses with

no way to choose between them

« \We need mechanisms that allow us to find the most

ikely parse(s) for a sentence

— Statistical parsing lets us work with very loose grammars
that admit millions of parses for sentences but still quickly

find the best parse(s)

The

((S

he rise of annotated data:

Penn Treebank (PTB)

(NP-SBJ (DT The) (NN move))

(VP (VBD followed)
(NP

(NP (DT a) (NN round))

(PP (IN of)
(NP

(NP (JJ similar) (NNS increases))

(PP (IN by)

(NP (JJ other) (NNS lenders)))

(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))

()

(S-ADV

(NP-SBJ (-NONE- *))

(VP (VBG reflecting)
(NP

(NP (DT a) (VBG continuing) (NN decline))

(PP-LOC (IN in)

(NP (DT that) (NN market)))))))

()

[Marcus et al. 1993]

The rise of annotated data

« Starting off, building a treebank seems a lot
slower and less useful than building a
grammar

« But a treebank gives us many things

— Reusability of the labor
« Many parsers, POS taggers, etc.
« Valuable resource for linguistics

— Broad coverage
— Frequencies and distributional information
— A way to evaluate systems

PTB Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADJP
ADVP
NP

PP

S

SBAR
SBARQ
SINV

SQ

VP
WHADVP
WHNP
WHPP

X

*
0
T

Adjective phrase

Adverb phrase

Noun phrase

Prepositional phrase

Simple declarative clause

Subordinate clause

Direct question introduced by wh-element
Declarative sentence with subject-aux inversion
Yes/no questions and subconstituent of SBARQ excluding wh-element
Verb phrase

Wh-adverb phrase

Wh-noun phrase

Wh-prepositional phrase

Constituent of unknown or uncertain category
“Understood” subject of infinitive or imperative
Zero variant of that in subordinate clauses
Trace of wh-Constituent

+ all POS tags

Non Local Phenomena

 Dislocation / gapping
— Which book should Peter buy?
— A debate arose which continued until the

election. o
+ Binding v 2
— Reference Which book MD S
 The IRS audits itself | N
. C t | should NP VP
ontro N N
— | want to go Peter VB NP

e

— | want you to go

buy

PTB Size

« Penn WSJ Treebank:
— 50,000 annotated sentences

« Usual set-up:
— 40,000 training
— 2,400 test

TOP
ND/T\VP
NMPS VWP
P
CAN ump R‘B NP/\FP
‘P PRPS J_ NN cc J N S I/\NP
mvc, NP/\SBAR
NKP PUNC, WHA‘DVP/\S
WLB N/\P
D N VBZ P

A NNS PUNC.
R| CcD

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its natural gas and electric utility busir in Alberta , where the company serves about SOLOOO customers .

Probabilist

Gramm

c Context-Free

ars (

PC

Q)

« A context-free grammar is a tuple <N, 2, S, R>

— N : the set of non-terminals
« Phrasal categories: S, NP, VP, ADJP, etc.
« Parts-of-speech (pre-terminals): NN, JJ, DT, VB
— 2 : the set of terminals (the words)

— S : the start symbol

« Often written as ROOT or TOP
» Not usually the sentence non-terminal S

— R :the set of rules

« OftheformX-=>Y,Y,...Y, ,withX € N,n20, Y, (N U 2)
« Examples: S > NP VP, VP - VP CC VP
» Also called rewrites, productions, or local trees

« A PCFG adds a distribution q:
— Probability g(r) for each r € R, such that for all X & N:

2

gla = B) =1

a—PBER:a=X

PCFG Example

S — NP VP 0 Vi = sleeps 1.0
: Vt = saw 1.0
VP = Vi 04 NN = man 07
VP = YVt NP 04 '
NN = woman 0.2
b = VP PP 0.2 NN = telescope | 0.1
NP = DT NN |03 pe |
DT = the 1.0

NP = NP PP 0.7 .
PP — P NP 0 IN = with 0.5
: IN = in 0.5

e Probability of a tree ¢ with rules
oy — [Br,00 — Pay .0 — By
1S
H q &y — ﬂz

where q(a — () is the probabﬂlty for rule o« — 3.

PCFG
S = NP VP 1.0
VP = Vi 0.4
VP = Vt NP 0.4
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0
Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = 1n 0.5

-xample

The man sleeps

The man saw the woman with the telescope

PCFG Example

S = NP VP 1.0
VP = Vi 0.4
VP = Vt NP 0.4
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0
Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = 1n 0.5

S
/Q

NP VP
T1= A3 |04
DIO N(I)\I7 | 4.0
The man sleeps
p(ty)=1.0"0.3"1.0"0.7*0.4*1.0

81.0
VP 0.2
t = /\
° VP04 PP
X -\

NP03 Vi NP IN NP03
VN 1.0 /\ 5 -\
DT NN \ DT NN ‘O DT NN
1.0 0.7 [0 02 .0 101

The man saw the woman with the telescope

p(ty)=1.0"0.31.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1

Learning and Inference

 Model

— The probability of a tree t withnn rulesa =2 B, i =1..n

p(t) = HQ(ai — B34)

» Learning
— Read the rules off of labeled sentences, use ML estimates for

probabilities Count(a —)
Count(«)

— and use all of our standard smoothing tricks!

qur(o— f) =

e [nference

— For input sentence s, define T(s) to be the set of trees whose yield is s
(whose leaves, read left to right, match the words in s)

t*(s) = arg max p(t
(5) = arg max. p(1)

The Constituency Parsing Problem

S
/\VP
NP /\NP
T |
N N V N

I I | I
fish people fish tanks

PCFG

Rule Prob 6;
S —> NP VP g
NP —- NP NP 6,

N — fish 045
N — peopleB,,
V — fish 044

A Recursive Parser

bestScore(X,1,73,s)
if (§ == i)
return g(X->s[1i])
else
return max g (X->YZ) *
bestScore(Y,i,k,s) *
bestScore(Z,k+1,j,s)

« Will this parser work?
* Why or why not”?

« Q: Remind you of anything? Can we adapt
this to other models / inference tasks?

Cocke-Kasami-Younger (CKY)
Constituency Parsing

fish people fish tanks

Cocke-Kasami-Younger (CKY)

people

Constituency

fish

Parsing

S NP VP

VP - V NP

VP - V @VP_V
VP - V PP
@VP_V - NP PP
NP — NP NP
NP — NP PP
PP — P NP

0.9
0.5
0.3
0.1
1.0
0.1
0.2
1.0

Cocke-Kasami-Younger (CKY)

people

Constituency

fish

Parsing

S —> NP VP

VP — V NP

VP >V @VP_V
VP -V PP
@VP_V — NP PP
NP — NP NP

NP — NP PP

PP — P NP

0.9
0.5
0.3
0.1
1.0
0.1
0.2
1.0

Cocke-Kasami-Younger (CKY)

people

Constituency

fish

Parsing

S — NP VP

VP — V NP

VP >V @VP_V
VP - V PP
@VP_V — NP PP
NP — NP NP
NP — NP PP

PP — P NP

0.9
0.5
0.3
0.1
1.0
0.1
0.2
1.0

Cocke-Kasami-Younger (CKY)

people

Constituency

fish

Parsing

S — NP VP

VP - V NP

VP >V @VP_V
VP -V PP
@VP_V — NP PP
NP — NP NP

NP — NP PP

PP — P NP

0.9
0.5
0.3
0.1
1.0
0.1
0.2
1.0

CKY Parsing

- We will store: score of the max parse of x; to
X; with root non-terminal X

(4,7, X)
* SO we can compute the most likely parse:
w(1,n,S)=arg max € Ta(x)
* Via the recursion:
m(4,7,X) =

 With base case;
(i1, X) =

The CKY Algorithm

* Input: asentence s =x;..x,and aPCFG = <N, 2,S, R, g>
o |nitialization: Fori=1...nand all Xin N

- B (X —ux;) iftX —-2,€R
m(i, i, X) = <\ 0 otherwise
e Forl=1...(n-1) iterate all phrase lengths]
— Fori=1...(n-l)and | =i+l [iterate all phrases of length []
 Forall Xin N [iterate all non-terminals]
n(i, 4, X) = max (q(X —YZ)x(i,sY) x (s +1,5,7))
sEfi(-1)}

 also, store back pointers

bp(i,j, X) = arg max (¢(X = YZ)xn(i,sY)xn(s+1,5 7))

XY ZER,

s€fi...(j—1)}

Probabilistic CKY Parser

S — NPVP 0.8
S—X1VP 0.1
X1 — Aux NP 1.0
S — book | include | prefer

0.01 0.004 0.006
S — Verb NP 0.05
S — VP PP 0.03
NP— I | he | she| me

0.1 0.02 0.02 0.06
NP — Houston | NWA

0.16 .04

Det— the | a | an

0.6 0.1 0.05
NP — Det Nominal 0.6

Nominal — book | flight | meal | money
0.03 0.15 0.06 0.06

Nominal — Nominal Nominal 0.2

Nominal — Nominal PP 0.5

Verb— book | include | prefer
0.5 0.04 0.06

VP — Verb NP

VP — VP PP

Prep — through | to | from

0.2 0.3 0.3
PP — Prep NP 1.0

© o
wW O,

%o

Probabilistic CKY Parser

S — NPVP

S —>X1VP

X1 — Aux NP

S — book | include | prefer
0.01 0.004 0.006

S — Verb NP

S — VP PP

NP— I | he | she| me
0.1 0.02 0.02 0.06

NP — Houston | NWA

0.16 .04

Det— the | a | an
0.6 0.1 0.05

NP — Det Nominal

Nominal — book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal — Nominal Nominal

Nominal — Nominal PP

Verb— book | include | prefer

0.5 0.04 0.06
VP — Verb NP
VP — VP PP
Prep — through | to | from
0.2 0.3 0.3
PP — Prep NP

0.6

0.2
0.5

© o
wW O,

S:.01,
Verb:.5 &

I
=.00135

P

S :.03*.0135*.032I
=.00001296

Nominal: 93—

——— Mfr5%.5+.054

None

|=.0135

None

+.05*%.5*
.000864
0000216

%o

XP:.6%.6*
Det:.6zé =.054

i

None

NP:.6*.6*
0024
=.000864

%,

l

Nominal:.15

None

INominal:
.5*.15*.032
=.0024

(o

Prep:.2

4
éﬁ%
@,

%

PP:1.0*.2*.16

" =032

!

[NP:.16

0
s,
7

2

Probabilistic CKY Parser

S :.01, S:.05%.5%.054 S:.03%.0135%.032
Verb:5<—— | =.00135 =.00001296
Nominal:.03 .
omina None VP:.5%.5%.054| None 5:.0000216
@0 =.0135 /
'Z
%% NP:.6*.6*
W/ 0024
= None =.000864
Detzr 054
Vo
< Nominal:
o .5*.15*.032
Nominal:.15 None — 0024
%
% PP:1.0%.2*.16
) Prep:3~ || —032
%,
%y U
NP:.16
(/)
((,,,

%

Pick most
probable
parse

The CKY Algorithm

* Input: asentence s =x;..x,and aPCFG = <N, 2,S, R, g>
o |nitialization: Fori=1...nand all Xin N

- B (X —ux;) iftX —-2,€R
m(i, i, X) = <\ 0 otherwise
e Forl=1...(n-1) iterate all phrase lengths]
— Fori=1...(n-l)and | =i+l [iterate all phrases of length []
 Forall Xin N [iterate all non-terminals]
n(i, 4, X) = max (q(X —YZ)x(i,sY) x (s +1,5,7))
sEfi(-1)}

 also, store back pointers

bp(i,j, X) = arg max (¢(X = YZ)xn(i,sY)xn(s+1,5 7))

XY ZER,

s€fi...(j—1)}

Time: Theory

* For each length (<= n)

— Foreachi(<=n)

» For each split point k
— Foreachrule X>Y/Z
» Do constant work

 Total time: |rules|*n?

Time: Practice

» Parsing with the vanilla treebank grammar:

360 ~ 20K Rules

300 (not an

. — optimized

parser!)

Observed
exponent:

3.6

N
S
o

180

120

Avg. Time (seconds)

2}
o

0
0 10 20 30 40 50

Sentence Length
« Why’s it worse in practice”
— Longer sentences “unlock” more of the grammar
— All kinds of systems issues don’t scale

The CKY Algorithm

* Input: asentence s =x;..x,and aPCFG = <N, 2,S, R, g>
o |nitialization: Fori=1...nand all Xin N

- B (X —ux;) iftX —-2,€R
m(i, i, X) = <\ 0 otherwise
e Forl=1...(n-1) iterate all phrase lengths]
— Fori=1...(n-l)and | =i+l [iterate all phrases of length []
 Forall Xin N [iterate all non-terminals]
n(i, 4, X) = max (q(X —YZ)x(i,sY) x (s +1,5,7))
sEfi(-1)}

 also, store back pointers

bp(i,j, X) = arg max (¢(X = YZ)xn(i,sY)xn(s+1,5 7))

XY ZER,

s€fi...(j—1)}

Memory

 How much memory does this require?
— Have to store the score cache

— Cache size:
* |symbols|*n? doubles

* Pruning: Beams
— score[X][i][j] can get too large (when?)

— Can keep beams (truncated maps scoreli]lj])
which only store the best few scores for the span
[i,j]] — Exact?

* Pruning: Coarse-to-Fine
— Use a smaller grammar to rule out most X[i,]]

Let’s parse with CKY!!

* Any problem?

TOP

NmPS VWP

P
CAN I P
‘P PRPS J_ NN cc J N S I/\NP

mvc, NP/\SBAR

NKP PUNC, WHA‘DVP/\S

WLB N/\P

D N VBZ P
/Mc.

RAD

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its natural gas and electric utility busir in Alberta , where the company serves about 800,000 customers .

Chomsky Normal Form

e AllrulesareoftheformX—->YZorX > w
- XY, ZEe Nandw e T

« A transformation to this form doesn’t change the weak generative
capacity of a CFG

— That s, it recognizes the same language
« But maybe with different trees

« Empties and unaries are removed recursively
* n-ary rules are divided by introducing new nonterminals (n > 2)

VP

Ve [VP - VBD NP PP o]
TN ‘ [VP > VBD NP] x

VBD NP PP PP
5 NP PP PP

Special Case: Unary Rules

« Chomsky normal form (CNF):
— All rules of the form X >Y Zor X > w
— Makes parsing easier!

« Can also allow unary rules
— Allrules oftheform X >Y Z X=> Y, or X > W
— Conversion to/from the normal form is easier
— Q: How does this change CKY?
— WARNING: Watch for unary cycles...

CKY with Unary Rules

* Input: a sentence s = x4 .. x,and a PCFG = <N, 2 |5, R, g>
« [Initialization: Fori=1...n:

— Step 1: for all Xin N: {q(X—>$i) ifX -2 €R

(i1, X) = 0 otherwise

— Step 2: for all Xin N:
(1,1, X) = max (¢(X —=Y)xw(:,4,Y))

X—=YeER
e Forl=1..(n-1) [iterate all phrase lengths]
— Fori=1...(n-l)and | = i+l literate all phrases of length |]
« Step 1: (Binary)
— Forall Xin N [iterate all non-te
m5(i,j, X) = max (¢ Must always have
X—=YZeR,se{i...(j—1)} one and exacﬂ
« Step 2: (Unary) Y
— Forall XinN [literate all non-te one Uﬂary rU|e!

(i, 4, X) = ngyéR(q(X —Y) X 7E

Unary Closure

« Rather than zero or more unaries, always exactly one

» Calculate closure Close(R) for unary rules in R
— Add X-Y if there exists a rule chain X%Z s VA % Zy

Y with g(X=Y) = g(X=>2Z,)*a(Z,>4,) Zk -
— Add X->X with g(X->X)=1 for all X in N
VP P SBAR
VBD NP — | SBAR
o = VN L S
— DT NN VP
DT NN

« |n CKY and chart: Alternate unary and binary layers

« Reconstruct unary chains afterwards (with extra
marking)

Other Chart Computations

* Max inside score
— Score of the max parse of X; to x; with root X

(i, 7, X
— Marginalize over mtemal structure

 Max outside score / \

« Sum inside/outside

I k k+1

Other Chart Computations

e Max inside score

« Max outside score

— Score of max parse of the 8
complete span with a gap
between | and |

— Detalls In notes / \
A

e« Sum inside/outside

Other Chart Computations

e Max inside score
« Max outside score

« Sum inside/outside

— Do sums instead of
maxes]

AN

Just Like Sequences

* Locally normalized:

— Generative
— MaxEnt

« Globally normalized:
— CRFs

e Additive, un-normalized;
— Perceptron

Treebank Parsing

((S
(NP-SBJ (DT The) (NN move))

(VP (VBD followed)
(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))
(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
()
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)
(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)
(NP (DT that) (NN market)))))))
()

[Marcus et al. 1993]

Treebank Grammars

* Need a PCFG for broad coverage parsing.
« Can take a grammar right off the trees:

ROOT
| ROOT - S 1
S

NP VP .
| P NP - PRP]
PRP VBD ADJP .
| | | VP > VBD ADJP 1

He was]]

right

Typical Experimental Setup

 The Penn Treebank is divided Into
sections:

— Training: sections 2-18
— Development: section 22 (also 0-1 and 24)
— Testing: section 23

e Evaluation?

—valuating Constituency Parsing

Gold standard brackets: S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
|

S
7
NP VP NP .
T - I |
NNS NNS VBD VP NN .11
| | | — |
o Sales 1 executives » were VBG NP PP yesterday 19
3 examining DT NNS IN NP

| | | —
4 the s figuresg with J]J NN
| [
7 great g careg

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)
|
S
/‘——————-
NP VP .
NNS NNS VBD VP .11
[I [e
o Sales 1 executives » were VBG NP PP
3 examining DT NNS IN NP
| | | —T
4 the s figuresg with]] NN NN

| | |
7 great g care g yesterday 1o

—valuating Constituency

Recall:

Parsing

— Recall = (# correct constituents in candidate) / (# constituents in

gold)
Precision:

— Precision = (# correct constituents in candidate) / (#

constituents in candidate)

Labeled Precision and labeled recall require getting the
non-terminal label on the constituent node correct to

count as correct.

F1 is the harmonic mean of precision and recall.
— F1=(2 * Precision * Recall) / (Precision + Recall)

—valuating Constituency Parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-
(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6),
PP-(6-10), NP-(7,10)

 Precision: 3/7 = 42.9%
e Recall: 3/8 = 37.5%
e F1: 40%

Also, tagging accuracy: 11/11= 100%

How Good are PCFGs?

Penn WSJ parsing performance:

~ 73% F1

* Robust
— Usually admit everything, but with low probability
« Partial solution for grammar ambiguity
— A PCFG gives some idea of the plausibility of a parse

— But not so good because the independence assumptions are
too strong

« @Qive a probabilistic language model
— But in the simple case it performs worse than a trigram model

« The problem seems to be that PCFGs lack the lexicalization
of a trigram model

The Missing Information”

S
VP
/\
VP PP
-\ PN
NP Vi NP IN NP
N\ -\ N\
DT NN DT NN DT NN

I I I I I I
The man saw the woman with the hat

Extra Slides

Chomsky Normal Form

All rules are of the foom X > Y Zor X > w
-X, Y, Ze Nandw e T

A transformation to this form doesn’t change
the weak generative capacity of a CFG

— That Is, it recognizes the same language
« But maybe with different trees

Empties and unaries are removed recursively

n-ary rules are divided by introducing new
nonterminals (n > 2)

Example: Before Binarization

ROOT

S
NP vP
V NP PP
T T~
P NP
|
N \ \

I
people fish tanks with rods

N

Example: After Binarization

ROOT

|
S

SN

P V
/E -
N Vv NP P

P
N P NP
|

N
l

people fish tanks with rods

A Phrase Structure Grammar

S — NP VP

VP - V NP PP
NP — NP NP
NP — NP PP

\
\
\

N\

— people
— fish

— tanks
— rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

Step 1: Remove epsilon rules

S—> NPVP N — people
VP - V NP N — fish
VP — V NP PP N — fanks
NP — NP NP N — rods
NP — NP PP V — people
NP — N V — fish
NP — e V — tanks
PP — P NP P — with

Chomsky Normal Form

Step 1: Remove epsilon rules

S—> NPVP N — people
VP — V NP N — fish
VP — V NP PP N — tanks
NP — NP NP N — rods
NP — NP PP V — people
NP — N V — fish
NP -5 e V — tanks

PP — P NP P — with

Chomsky Normal Form

Step 1: Remove epsilon rules

S—> NPVP N — people
VP — V NP N — fish
VP - V NP PP N — tanks
NP — NP NP N — rods
NP — NP PP Recognizing the V- ,oeo,o/e
NP — N same language? V — fish
For every rule

pP——e with NP, create a V — tanks
PP > P NP |Unayrue P — with

Chomsky Normal Form

Step 1: Remove epsilon rules

S—> VP \ fich
VP — V NP — 1S
VP >V N — fanks
VP - V NP PP N — rods
VP —> V PP

NP —> NP NP vV — people
NP —s NP V — fish
NP — NP PP V > tanks
NP — PP :
NP - N P — with
PP »> P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S—> VP \ fich
VP — V NP — 1S
VP >V N — fanks
VP - V NP PP N — rods
VP —> V PP

NP —> NP NP vV — people
NP —s NP V — fish
NP — NP PP V > tanks
NP — PP :
NP - N P — with
PP »> P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S—> VP \ fich
VP — V NP — 1S
VP >V N — fanks
VP - V NP PP N — rods
VP — V PP

NP —> NP NP vV — people
NP —s NP V — fish
NP — NP PP V > tanks
NP — PP -
NP - N P — with
PP — P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary ru

S — NP VP
S—-vR

VP - V NP
VP > V

VP - V NP PP
VP — V PP
NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP — N

PP — P NP
PP — P

Recognizing the
same language?
Work your way
down to
propagate

€S

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

Step 2: Remove unary ru

S —> NPVP
e—HE
VP - V NP
VP>V

VP - V NP PP
VP - V PP
NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP — N
PP —> P NP
PP - P

Recognizing the
same language?
Work your way
down to
propagate

€S

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

Step 2: Remove unary ru

S —> NP VP
VP - V NP
S—> VNP
VP >V
S—->V

VP - V NP PP
S —>VNPPP
VP - V PP
S—> VPP
NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP — N
PP - P NP
PP > P

Just added a
unary rule!
Need to apply
until they are all
gone

€S

\
\
\

N\

— people
— fish

— tanks
— rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

Step 2: Remove unary ru

S —> NP VP
VP - V NP
S—> VNP
VP >V
E—-

VP - V NP PP
S —>VNPPP
VP - V PP
S—> VPP
NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP — N
PP - P NP
PP > P

Just added a
unary rule!
Need to apply
until they are all
gone

€S

\
\
\

N\

— people
— fish

— tanks
— rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP

\ /
VP = V NP —>peope
S— VNP N — fish
VP >V
VP — V NP PP N — tanks
S > VNPPP N — rods
VP = V PP
S VPP V> peo,o/e
NP — NP NP V — fish
NP — NP
NP —s NP PP V- ta'nks
NP — PP P — with
NP — N
PP 5 PNP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP

\ /
VP = V NP —>peope
S— VNP N — fish
V/-BENRY,
VP = V NP PP N — tanks
S > VNPPP N — rods
VP = V PP
S VPP V> peo,o/e
NP — NP NP V — fish
NP — NP
NP — NP PP V- ta'nks
NP — PP P — with
NP — N
PP > P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP

VP — V NP _)p,eOp/e
S 5\ NP N — fish
VP - V NP PP N — fanks
S—> VNPPP

VP - V PP N — rods
S—> VPP V — people
NP — NP NP -

NP s NP V — fish
NP — NP PP V — tanks
NP — PP -

NP N P — with
PP — P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP

VP — V NP N peop/e
S VNP N — fish
VP — V NP PP N — fanks
S > VNP PP
VP = \/ PP Recognizing the N — rods
S—> VPP same language? V — people
NP - NP NP | Yes! -

V — fish
NP — NP PP V — tanks
NP — PP -
NP N P — with
PP > P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S—>NPVP N — people

VP - V NP ,

S 5\ NP N — fish

VP - V NP PP N — fanks

S > VNP PP

VP - V PP N — rods

S—> VPP V — people

e nn - [only place N V = fish

appears

HE - IF\’IIE PP So can get rid of V — tanks
— it altogether P — with

PH2—PL

PP > P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP NP — peop/e
VP~ VNP NP — fish
S—> VNP 5

VP — V NP PP \D_’ta”ks
S — V NP PP NP — roas
VP - V PP V — people
S— VPP V — fish
NP — NP NP V _s tanks
NP — NP PP .

NP _s PP P — with
PP > P NP

PP — P

Chomsky Normal Form

Step 2: Remove unary rules

S —> NP VP NP — peOp/e
S—> VNP

VP — V NP PP NP — fanks
S — V NP PP NP — roas
VP - V PP V — people
S—> VPP V — fish

NP — NP NP V —s tanks
NP — NP PP 5 s with
NP—PR

PP —» P NP

PR—R

Chomsky Normal Form

Step 2: Binarize

S—>NPVP
VP — V NP
S—> VNP
VP — V NP PP
S—>VNPPP
VP - V PP
S—>VPP
NP — NP NP
NP — NP PP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with

Chomsky Normal Form

Step 2: Binarize

S—>NPVP
VP — V NP
S—> VNP

VP - VNP PP
S—>VNPPP
VP - V PP
S—>VPP
NP — NP NP
NP — NP PP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with

Chomsky Normal Form

Step 2: Binarize

S —> NP VP

VP - V NP
S—> VNP
VP>V @VP_V
@VP_V > NP PP
S>V@SV
@S V> NP PP
VP -V PP

S—> VPP

NP — NP NP
NP — NP PP
NP — P NP
PP - P NP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with

Chomsky Normal Form: Source

S — NP VP

VP - V NP PP
NP — NP NP
NP — NP PP

\
\
\

N\

— people
— fish

— tanks
— rods

V — people
V — fish

V — tanks
P — with

Chomsky Normal Form

S —> NP VP

VP - V NP
S—> VNP

VP -V @VP_V
@VP_V — NP PP
S->V@S\V
@S _V > NP PP
VP -V PP
S—> VPP

NP — NP NP
NP — NP PP
NP — P NP
PP - P NP

NP — people
NP — fish
NP — tanks
NP — rods

V — people
S — people
VP — people
V — fish

S — fish

VP — fish

V — tanks

S — tanks
VP — tanks
P — with

PP — with

Chomsky Normal Form

You should think of this as a transformation for efficient
parsing

With some extra book-keeping in symbol names, you can
even reconstruct the same trees with a detransform

« In practice full Chomsky Normal Form is a pain
— Reconstructing n-aries is easy

— Reconstructing unaries/empties is trickier

The rest isn't necessary; it just makes the algorithms cleaner
and a bit quicker

Treebank: empties and unaries

ROOT RO/OT ROOT ROOT ROOT
| |
S-HLN S S
A A |
NP-SUB]J VP
| \ \ \ |
-NONE- VB -NONE- VB VB VB
. \
e Atone € Atone Atone Atone Atone

PTB Tree NoFuncTags NoEmpties ~ High Low
NoUnaries

