CS5740: Natural Language Processing
Spring 2017

Dependency Parsing

Slides adapted from Dan Klein, Luke Zettlemoyer, Chris Manning, and Dan Jurafsky, and David Weiss

Overview

The parsing problem

Methods
— Transition-based parsing

Evaluation
Projectivity

Parse Trees

» Part-of-speech Tagging:
— Word classes

» Parsing:
— From words to phrases to sentences
— Relations between words

* TWO Views

— Constituency
— Dependency

Constituency (Phrase Structure)

Parsing

» Phrase structure organizes words into
nested constituents

* Linguists can, and do, argue about detalls

» Lots of ambiguity

S

new art critics write reviews with computers

Dependency Parsing

* Dependency structure shows which
words depend on (modity or are
arguments of) which other words.

~~A VYA

The boy put the tortoise on the rug

Dependency Structure

« Syntactic structure consists of:
— Lexical items
— Binary asymmetric relations >dependencies

submitted

Dependencies are ”SUbfpV lauxpaswep
typed Wi’['h name Qf Bills were by
grammatical relation prep lpobj
on Brownback
pobj, ”’f/ w‘ppos

ports Senator Republican

ﬁﬁ//\\gpnj prep |

and immigration of
pobj
Kansas

Dependency Structure

« Syntactic structure consists of:
— Lexical items
— Binary asymmetric relations >dependencies

. Head (governor,
SU bml t t e d superior, regent)

i’lSUb_]paSS Arrow from head to
modifier (but can
be reversed)

2EMRRZ] Modifier (dependent,

inferior, subordinate)

Dependency Structure

« Syntactic structure consists of:
— Lexical items
— Binary asymmetric relations >dependencies

submitted
Dependencies ”SUbjPV lauxpaswep
form a tree Bi1ls ere >
prep| |pobj

on Brownback

pobj, ”’"V y‘ppos

ports Senator Republican
c‘c/ \c‘onj prep
and immigration df
pobj

Kansas

Dependency Structure

« Syntactic structure consists of:
— Lexical items
— Binary asymmetric relations >dependencies

submitted+«
Dependencies ”SUbJPV lauxpasw‘ep
form a tree Bi1ls ere >
prep| |pobj

on Brownback

pobj | ”’"V w‘ppos

orts .
Senator Republican
C/ \0[’7_] prep
and immigration df
pobj

Kansas

L et’'s Parse

John saw Mary

He said that the boy who was wearing the blue shirt with the white pockets has left the building

Methods for Dependency Parsing

Dynamic programming (CKY-style)
— Similar to lexicalized PCFG: O(n°)
— Eisner (1996): O(n3)

Graph algorithms

— McDonald et al. (2005): score edges independently using classifier
and use maximum spanning tree

Constraint satisfaction
— Start with all edges, eliminate based on hard constraints

“Deterministic parsing”

jumped
— Left-to-right, each choice is done with a classifier JHP

nsubj prep
boy over
de’/\cjmod lpobj

the 1little the
l det

fence

Making Decisions

What are the sources of information for dependency parsing?
1. Bilexical affinities
— [issues > the] is plausible

2. Dependency distance
— mostly with nearby words

3. Intervening material
— Dependencies rarely span intervening verbs or punctuation

4. Valency of heads
— How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed .

MaltParse (Nivre et al. 2008)

Greedy transition-based parser

Each decision: how to attach each word as we
encounter it

— If you are familiar: like shift-reduce parser
Select each action with a classifier

The parser has:

— a stack o, written with the top to the right
« which starts with the ROOT symbol

— a buffer 3, written with the top to the left
« which starts with the input sentence

— a set of dependency arcs A
« which starts off empty

— a set of actions

Arc-standard

Start: 0 =[ROOT], B=wq, ..., w,,A=09

* Shift o, wilB3, A -2 olw,;, B, A

« Left-Arc, olw;, wlB, A =2 0, w|B, AU{r(w;,w,)}
- Right-Arc, olw;, w|B, A =2 o, w|B, AU{r(w,w)}

Finish: B=2

Dependency Parsing

¥ O\
/"

Arc-standard Dependency Parsing

Start: 0 =[ROOT],B=w4, ..., Ww,,A=02

 Shift o, w3, A -2 o|w;, B, A
« Left-Arc, ojw;, wilB, A > o, w|B, AU{r(w,w))} ¥
- Right-Arc, olw, w(B, A > o, w|B, AU{r(w,w))} /
Finish: B =2 /\
¥ N\
ROOT Joe likes Marry
[ROOT] Joe, likes, marry] 2z
Shift [ROOT, Joe] likes, marry] Z
Left-Arc [ROOT] likes, marry] {(likes,Joe)} = A,
Shift [ROOT, likes] ‘marry] A,
Right-Arc [ROOT] likes] A; U {(likes,Marry)} = A,
Right-Arc] [ROOT] A, U {(ROQOT, likes)} = A;
Shift [ROOT]] A,

Arc-standard

Dependency Parsing

Start: 0 =[ROOT],B=w4, ..., Ww,,A=02

e Shift o, w3, A -2 olw;, B, A
. Left-Arc, olw, wiB, A > o, w|B, AU{r(w,w,)}
- Right-Arc, olw, w(B, A > o, w|B, AU{r(w,w,)}

Finish: B=2

o < AN

¥ O\
/"

ROOT Happy children like to play with their friends .

Arc-eager Dependency Parsing

Start: o=[ROOT],B=w;, ..., w,,A=2

« Left-Arc, olw;, wilB, A = o, w|B, AU{r(w,w)} ¥
— Precondition: r'(w,, w;) € A, w; # ROOT

- Right-Arc, olw;,, w|B, A > olw|w;, B, AU{r(w,w,)} /"

« Reduce ow,B,A =20PB A
— Precondition: r'(w,, w,) € A

o Shift o, W3, A -2 olw;, B, A

Finish: B=2

This is the common “arc-eager” variant. a head can
immediately take a right dependent, before its
dependents are found

1. Left-Arc, o|lw, w|B, A= o, w|B, AU{r(w,w,)}
Precondition: r{w,, w) € A, w;= ROOT
A 2. Right-Arc, o|wi, w|B, A = o|wjw; B, AU{r(w,w))
rC_eager 3. Reduce olw,B A=2>0,B A
Precondition: r{w,, w) € A
4. Shift o, wiB, A= olw, B, A

AN e\

ROOT Happy children like to play with their friends .

1. Left-Arc, olw, w|B, A= o, w|B, AU{n(w;,w)}
Precondition: r{w,, w) € A, w;= ROOT

A 2. Right-Arc, o|lwi, w|B, A 2 olwjw, B, AU {rnw,w)}
rC_eager 3. Reduce olw,B A=2>0,B A
Precondition: r{w,, w) € A
4. Shift o, wjiB, A = olw, B, A

/f\\/n/r\\

ROOT Happy children like to play with their friends .

[ROOT] [Happy, children, ...] @
Shift [ROOT, Happy] [children, like, ...] Z
LA, [ROOT] [children, like, ...] {amod(children, happy)} = A,
Shift [ROOT, children] [like, to, ...] A,
LAsy [ROOT] [like, to, ...] A, U {nsubj(like, children)} = A,
RA,..; [ROOQOT, like] [to, play, ...] A, U{root(ROOQOT, like) = A4
Shift [ROQT, like, to] [play, with, ...] A,
LA, [ROOT, like] [play, with, ...] A, U {aux(play, to) = A,
RAcomp [ROOT, like, play] [with their, ...] A, U {xcomp(like, play) = Ag

Arg-eager :

AN

ROOT Happy children like to play with their friends .

RA
RAorep
Shift
I—A,OOSS
I:‘)Apobj
Reduce
Reduce
Reduce
RA

xcomp

punc

[ROOT,

like,
like,
like,
like,
like,
like,
like,
like]

play]
play,
play,
play,
play,
play,
play]

like, .]

with]

with, their]
with]

with, friends]
with]

Left-Arc,

olw;, wiB, A= o, w|B, AU{rn(w,w)}
Precondition: r{w,, w) € A, w;= ROOT

Right-Arc, o|wi, w|B, A = o|lwjw, B, AU {n(w,w)}

Reduce

Shift

[]

olw,B,A=>0o,B A
Precondition: r{w,, w) € A
o, w|B, A = o|lw, B, A

A\

[with their, ...] A, U {xcomp(like, play) = As
[their, friends, ...] AsU{prep(play, with) = A4
[friends, .] Ag

[friends, .] Ag U {poss(friends, their) = A,
[.] A, U {pobj(with, friends) = Ag
[] Ag

[] Ag

[] Ag

Ag U {punc(like, .) = Aq

You terminate as soon as the buffer is empty. Dependencies = Aq

MaltParser (Nivre et al. 2008)

Selecting the next action:

— Discriminative classifier (SVM, MaxEnt, etc.)
— Untyped choices: 4

— Typed choices: |[R| * 2 + 2

Features: POS tags, word in stack, word in
butfer, etc.

Greedy = no search
— But can easily do beam search

Close to state of the art
Linear time parser - very fast!

Parsing with Neural Networks
Chen and Manning (2014)

* Arc-standard Transitions
— Shift
— Left-Arc,
— Right-Arc,

» Selecting the next actions:
— Untyped choices: 3
— Typed choices: [R| * 2 + 1
— Neural network classifier

« With a few training and model improvements
gives SOTA results

Parsing with Neural Networks
Chen and Manning (2014)

[Chen & Manning, 2014]

(00000) Softmax Layer
(0000000) Hidden Layer

Embedding Layer

' (OOO OCTDO) (@000) [OOO) (words labels pos)
(e]e]e]e]>]o]e]e]0]0]0]0) stacko-word = “ticket”
O00000000000) buffero-word = “to”
(C@O000 stacko-label = “det”

(OO000000) buffero-POS = “IN”

Evaluation

Acc = # correct deps

/\ /_\ # of deps

A\ N UAS = 4/5 = 80%

ROOT She saw the video lecture LAS = 2/5 = 40%
0 1 2 3 4 5

Gold Parsed

1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root

3 5 the det 3 4 the det

4 5 video nn 4 5 video nsSub|
5 2 lecture dobj 5 2 lecture ccomp

Projectivity

« Dependencies from CFG trees with head rules must
be projective
— Crossing arcs are not allowed

« But: theory allows to account for displaced
constituents - non-projective structures

(et

Who did Bill buy the‘/c&fee from yesterday 7

Projectivity

* Arc-eager transition system:
— Can’t handle non-projectivity

» Possible directions:
— Give up!
— Post-processing
— Add new transition types

— Switch to a different algorithm
« Graph-based parsers (e.g., MSTParser)

