
Recurrent Neural Networks

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Adapted from Yoav Goldberg’s Book and slides by Sasha Rush

Overview
• Finite state models
• Recurrent neural networks (RNNs)
• Training RNNs
• RNN Models
• Long short-term memory (LSTM)

Text Classification
• Consider the example:

– Goal: classify sentiment
How can you not see this movie?
You should not see this movie.

• Model: unigrams and bigrams
• How well will the classifier work?

– Similar unigrams and bigrams
• Generally: need to maintain a state to

capture distant influences

Finite State Machines
• Simple, classical way of representing

state
• Current state: saves necessary past

information
• Example: email address parsing

Deterministic Finite State Machines
• 𝑆 – states
• Σ – vocabulary
• 𝑠$ ∈ 𝑆 – start state
• 𝑅: 𝑆	×Σ → 𝑆 – transition function

• What does it do?
– Maps input 𝑤,,… ,𝑤/ to states 𝑠,, … , 𝑠/
– For all 𝑖 ∈ 1,… , 𝑛

𝑠3 = 𝑅(𝑠36,, 𝑤3)
• Can we use it for POS tagging? Language

modeling?

Types of State Machines
• Acceptor

– Compute final state 𝑠/ and make a decision
based on it: 𝑦 = 𝑂(𝑠/)

• Transducers
– Apply function 𝑦3 = 𝑂(𝑠3) to produce output

for each intermediate state
• Encoders

– Compute final state 𝑠/, and use it in another
model

Recurrent Neural Networks
• Motivation:

– Neural network model, but with state
– How can we borrow ideas from FSMs?

• RNNs are FSMs …
– … with a twist
– No longer finite in the same sense

RNN

• 𝑆 = 	ℝ;<=> - hidden state space
• Σ = ℝ;=? - input state space
• 𝒔$ ∈ 𝑆 - initial state vector
• 𝑅 ∶ ℝ;=?×ℝ;<=> → ℝ;<=> - transition

function
• Simple definition of 𝑅:

𝑅BCDE/ 𝒔, 𝒙 = tanh(𝒙, 𝒔 𝑾 + 𝒃)

Elman (1990)* Notation: vectors and matrices are bold

RNN
• Map from dense sequence to dense

representation
– 𝒙,, … , 𝒙/ → 𝒔,, … , 𝒔/
– For all 𝑖 ∈ 1, … , 𝑛

𝒔3 = 𝑅 𝒔36,, 𝒙
– 𝑅 is parameterized, and parameters are shared

between all steps
– Example:
𝒔N = 𝑅 𝒔O, 𝒙N = ⋯ = 𝑅(𝑅 𝑅 𝑅 𝒔$, 𝒙, , 𝒙Q , 𝒙O , 𝒙N)

RNNs
• Hidden states 𝒔3 can be used in different

ways
• Similar to finite state machines

– Acceptor
– Transducer
– Encoder

• Output function maps vectors to symbols:
𝑂:ℝ;<=> → ℝ;RST

• For example: single layer + softmax
𝑂 𝒔3 = softmax(𝒔3𝑾 + 𝒃)

Graphical Representation

Recursive Representation Unrolled Representation

Graphical Representation

Training
• RNNs are trained with SGD and Backprop
• Define loss over outputs

– Depends on supervision and task
• Backpropagation through time (BPTT)

– Run forward propagation
– Run backward propagation
– Update all weights

• Weights are shared between time steps
– Sum the contributions of each time step to the gradient

• Inefficient
– Batch helps, common but tricky to implement with

variable-size models

RNN: Acceptor Architecture
• Only care about the output from the last hidden

state
• Train: supervised, loss on prediction
• Example:

– Text classification

Language Modeling
• Input: 𝑋 = 𝑥,,… , 𝑥/
• Goal: compute 𝑝(𝑋)
• Bi-gram decomposition:

𝑝 𝑋 =]𝑝(𝑥3 ∣ 𝑥36,)
/

3_,
• With RNNs, can do non-Markovian models:

𝑝 𝑋 =]𝑝(𝑥3 ∣ 𝑥,, … , 𝑥36,)
/

3_,

RNN: Transducer Architecture
• Predict output for every time step

Language Modeling
• Input: 𝑋 = 𝑥,,… , 𝑥/
• Goal: compute 𝑝(𝑋)
• Model:

𝑝 𝑋 =]𝑝(𝑥3 ∣ 𝑥,, … , 𝑥36,)
/

3_,
𝑝 𝑥3 𝑥,, … , 𝑥36, = 𝑂 𝒔3 = 𝑂(𝑅 𝒔36,, 𝒙3)

𝑂 𝒔3 = softmax(𝑠3𝑾 + 𝒃)
• Predict next token �̀�3 as we go:

�̀�3 = argmax𝑂(𝒔3)

RNN: Transducer Architecture
• Predict output for every time step
• Examples:

– Language modeling
– POS tagging
– NER

RNN: Encoder Architecture
• Similar to acceptor
• Difference: last state is used as input to

another model and not for prediction
𝑂 𝑠3 = 𝑠3à 𝑦/ = 𝑠/

• Example:
– Sentence embedding

Bidirectional RNNs
• RNN decisions are based on historical data only

– How can we account for future input?
• When is it relevant? Feasible?

Bidirectional RNNs
• RNN decisions are based on historical data only

– How can we account for future input?
• When is it relevant? Feasible?

• When all the input is possible. So not in real-time input, for example.
• Probabilistic model, for example for language modeling:

𝑝 𝑋 =]𝑝(𝑥3 ∣ 𝑥,, … , 𝑥36,, 𝑥3c,, … , 𝑥/)
/

3_,

Deep RNNs
• Can also make RNNs deeper (vertically) to

increase the model capacity

RNN: Generator
• Special case of the transducer architecture
• Generation conditioned on 𝒔$
• Probabilistic model:

𝑝 𝑋 𝑠$ =]𝑝(𝑥3 ∣ 𝑥,, … , 𝑥36,, 𝑠$)
/

3_,

Example: Caption Generation
• Given: image 𝐼
• Goal: generate caption
• Set 𝒔$ = CNN(𝐼)
• Model:

𝑝 𝑋 𝐼 =]𝑝(𝑥3 ∣ 𝑥,, … , 𝑥36,, 𝐼)
/

3_,

Examples from Karpathy
and Fei-Fei 2015

Sequence-to-Sequence
• Connect encoder and

generator
• Many alternatives:

– Set generator 𝒔$; to
encoder output 𝒔/g

– Concatenate
generator 𝒔$; with
each step input
during generation

• Examples:
– Machine translation
– Chatbots
– Dialog systems

• Can also generate
other sequences – not
only natural language!

Long-range Interactions
• Promise: Learn long-range interactions of

language from data
• Example:

How can you not see this movie?
You should not see this movie.

• Sometimes: requires ”remembering” early
state
– Key signal here is at 𝑠,, but gradient is at 𝑠/

Long-term Gradients
• Gradient go through (many) multiplications
• OK at end layers à close to the loss
• But: issue with early layers
• For example, derivative of tanh

𝑑
𝑑𝑥 tanh 𝑥 = 1 − tanhQ𝑥	

– Large activation à gradient disappears
• In other activation functions, values can

become larger and larger

Exploding Gradients
• Common when there is

not saturation in activation
(e.g., ReLu) and we get
exponential blowup

• Result: reasonable short-
term gradient, but bad
long-term ones

• Common heuristic:
– Gradient clipping:

bounding all gradients by
maximum value

Vanishing Gradients
• Occurs when multiplying small values

– For example: when tanh saturates
• Mainly affects long-term gradients
• Solving this is more complex

Long Short-term Memory (LSTM)

Hochreiter and Schmidhuber (1997)

LSTM vs. Elman RNN

LSTM

Image by Tim Rocktäschel

f

t

=�(Wf [h
t�1,xt

] + b

f)

i

t

=�(Wi[h
t�1,xi

] + b

f)

c

t

=f

t

� c

t�1 + i

t

� tanh(Wc[h
t�1,xi

] + b

c)

o

t

=�(Wo[h
t�1,xi

] + b

o)

h

t

=o

t

� tanh(c
t

)

Cell State

Output

Input

