CS5740: Natural Language Processing Spring 2017

Recurrent Neural Networks

Instructor: Yoav Artzi

Overview

- Finite state models
- Recurrent neural networks (RNNs)
- Training RNNs
- RNN Models
- Long short-term memory (LSTM)

Text Classification

- Consider the example:
- Goal: classify sentiment

How can you not see this movie? You should not see this movie.

- Model: unigrams and bigrams
- How well will the classifier work?
- Similar unigrams and bigrams
- Generally: need to maintain a state to capture distant influences

Finite State Machines

- Simple, classical way of representing state
- Current state: saves necessary past information
- Example: email address parsing

Deterministic Finite State Machines

- S - states
- Σ - vocabulary
- $s_{0} \in S$ - start state
- $R: S \times \Sigma \rightarrow S$ - transition function
- What does it do?
- Maps input w_{1}, \ldots, w_{n} to states s_{1}, \ldots, s_{n}
- For all $i \in\{1, \ldots, n\}$

$$
s_{i}=R\left(s_{i-1}, w_{i}\right)
$$

- Can we use it for POS tagging? Language modeling?

Types of State Machines

- Acceptor
- Compute final state s_{n} and make a decision based on it: $y=O\left(s_{n}\right)$
- Transducers
- Apply function $y_{i}=O\left(s_{i}\right)$ to produce output for each intermediate state
- Encoders
- Compute final state s_{n}, and use it in another model

Recurrent Neural Networks

- Motivation:
- Neural network model, but with state
- How can we borrow ideas from FSMs?
- RNNs are FSMs ...
- ... with a twist
- No longer finite in the same sense

RNN

- $S=\mathbb{R}^{d_{h i d}}$ - hidden state space
- $\Sigma=\mathbb{R}^{d_{i n}}$ - input state space
- $\boldsymbol{s}_{0} \in S$ - initial state vector
- $R: \mathbb{R}^{d_{\text {in }}} \times \mathbb{R}^{d_{\text {hid }}} \rightarrow \mathbb{R}^{d_{\text {hid }}}$ - transition function
- Simple definition of R :

$$
R_{E l m a n}(\boldsymbol{s}, \boldsymbol{x})=\tanh ([\boldsymbol{x}, \boldsymbol{s}] \boldsymbol{W}+\boldsymbol{b})
$$

RNN

- Map from dense sequence to dense representation
$-\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \rightarrow \boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n}$
- For all $i \in\{1, \ldots, n\}$

$$
\boldsymbol{s}_{i}=R\left(\boldsymbol{s}_{i-1}, \boldsymbol{x}\right)
$$

$-R$ is parameterized, and parameters are shared between all steps

- Example:
$\boldsymbol{s}_{4}=R\left(\boldsymbol{s}_{3}, \boldsymbol{x}_{4}\right)=\cdots=R\left(R\left(R\left(R\left(\boldsymbol{s}_{0}, \boldsymbol{x}_{1}\right), \boldsymbol{x}_{2}\right), \boldsymbol{x}_{3}\right), \boldsymbol{x}_{4}\right)$

RNNs

- Hidden states \boldsymbol{s}_{i} can be used in different ways
- Similar to finite state machines
- Acceptor
- Transducer
- Encoder
- Output function maps vectors to symbols:

$$
O: \mathbb{R}^{d_{\text {hid }}} \rightarrow \mathbb{R}^{d_{\text {out }}}
$$

- For example: single layer + softmax

$$
O\left(\boldsymbol{s}_{i}\right)=\operatorname{softmax}\left(\boldsymbol{s}_{i} \boldsymbol{W}+\boldsymbol{b}\right)
$$

Graphical Representation

Recursive Representation

Graphical Representation

Training

- RNNs are trained with SGD and Backprop
- Define loss over outputs
- Depends on supervision and task
- Backpropagation through time (BPTT)
- Run forward propagation
- Run backward propagation
- Update all weights
- Weights are shared between time steps
- Sum the contributions of each time step to the gradient
- Inefficient
- Batch helps, common but tricky to implement with variable-size models

RNN: Acceptor Architecture

- Only care about the output from the last hidden state
- Train: supervised, loss on prediction
- Example:
- Text classification

Language Modeling

- Input: $X=x_{1}, \ldots, x_{n}$
- Goal: compute $p(X)$
- Bi-gram decomposition:

$$
p(X)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-1}\right)
$$

- With RNNs, can do non-Markovian models:

$$
p(X)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

RNN: Transducer Architecture

- Predict output for every time step

Language Modeling

- Input: $X=x_{1}, \ldots, x_{n}$
- Goal: compute $p(X)$
- Model:

$$
\begin{gathered}
p(X)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \\
p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=O\left(\boldsymbol{s}_{i}\right)=O\left(R\left(\boldsymbol{s}_{i-1}, \boldsymbol{x}_{i}\right)\right) \\
O\left(\boldsymbol{s}_{i}\right)=\operatorname{softmax}\left(s_{i} \boldsymbol{W}+\boldsymbol{b}\right)
\end{gathered}
$$

- Predict next token \hat{y}_{i} as we go:

$$
\hat{y}_{i}=\operatorname{argmax} O\left(\boldsymbol{s}_{i}\right)
$$

RNN: Transducer Architecture

- Predict output for every time step
- Examples:
- Language modeling
- POS tagging

RNN: Encoder Architecture

- Similar to acceptor
- Difference: last state is used as input to another model and not for prediction

$$
O\left(s_{i}\right)=s_{i} \rightarrow y_{n}=s_{n}
$$

- Example:
- Sentence embedding

Bidirectional RNNs

- RNN decisions are based on historical data only
- How can we account for future input?
- When is it relevant? Feasible?

Bidirectional RNNs

- RNN decisions are based on historical data only
- How can we account for future input?
- When is it relevant? Feasible?
- When all the input is possible. So not in real-time input, for example.
- Probabilistic model, for example for language modeling:

$$
p(X)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

Deep RNNs

- Can also make RNNs deeper (vertically) to increase the model capacity

RNN: Generator

- Special case of the transducer architecture
- Generation conditioned on \boldsymbol{s}_{0}
- Probabilistic model:

$$
p\left(X \mid s_{0}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, s_{0}\right)
$$

Example: Caption Generation

- Given: image I
- Goal: generate caption
- Set $\boldsymbol{s}_{0}=\operatorname{CNN}(I)$
- Model:

$$
p(X \mid I)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, I\right)
$$

Examples from Karpathy and Fei-Fei 2015

"little girl is eating piece of cake."

"a young boy is holding a baseball bat."

"baseball player is throwing ball in game."

'a cat is sitting on a couch with a remote control."

"woman is holding bunch of bananas."

"a woman holding a teddy bear in
front of a mirror."

Sequence-to-Sequence

- Connect encoder and generator
- Many alternatives:
- Set generator s_{0}^{d} to encoder output \boldsymbol{s}_{n}^{e}
- Concatenate generator \boldsymbol{s}_{0}^{d} with each step input during generation
- Examples:
- Machine translation
- Chatbots
- Dialog systems
- Can also generate other sequences - not only natural language!

Long-range Interactions

- Promise: Learn long-range interactions of language from data
- Example:

How can you not see this movie?
You should not see this movie.

- Sometimes: requires "remembering" early state
- Key signal here is at s_{1}, but gradient is at s_{n}

Long-term Gradients

- Gradient go through (many) multiplications
- OK at end layers \rightarrow close to the loss
- But: issue with early layers
- For example, derivative of tanh

$$
\frac{d}{d x} \tanh x=1-\tanh ^{2} x
$$

- Large activation \rightarrow gradient disappears
- In other activation functions, values can become larger and larger

Exploding Gradients

- Common when there is not saturation in activation (e.g., ReLu) and we get exponential blowup
- Result: reasonable shortterm gradient, but bad long-term ones
- Common heuristic:
- Gradient clipping:
 bounding all gradients by maximum value

Vanishing Gradients

- Occurs when multiplying small values
- For example: when tanh saturates
- Mainly affects long-term gradients
- Solving this is more complex

Long Short-term Memory (LSTM)

Hochreiter and Schmidhuber (1997)

LSTM vs. Elman RNN

LSTM

