CS5740: Natural Language Processing Spring 2017

Recurrent Neural Networks

Instructor: Yoav Artzi

Adapted from Yoav Goldberg's Book and slides by Sasha Rush

Overview

- Finite state models
- Recurrent neural networks (RNNs)
- Training RNNs
- RNN Models
- Long short-term memory (LSTM)

Text Classification

- Consider the example:
 - Goal: classify sentiment How can you not see this movie? You should not see this movie.
- Model: unigrams and bigrams
- How well will the classifier work?
 Similar unigrams and bigrams
- Generally: need to maintain a state to capture distant influences

Finite State Machines

- Simple, classical way of representing state
- Current state: saves necessary past information
- Example: email address parsing

Deterministic Finite State Machines

- S states
- Σ vocabulary
- $s_0 \in S$ start state
- $R: S \times \Sigma \rightarrow S$ transition function
- What does it do?
 - Maps input w_1, \ldots, w_n to states s_1, \ldots, s_n
 - For all $i \in \{1, \dots, n\}$

$$s_i = R(s_{i-1}, w_i)$$

Can we use it for POS tagging? Language modeling?

Types of State Machines

- Acceptor
 - Compute final state s_n and make a decision based on it: $y = O(s_n)$
- Transducers
 - Apply function $y_i = O(s_i)$ to produce output for each intermediate state
- Encoders
 - Compute final state s_n , and use it in another model

Recurrent Neural Networks

- Motivation:
 - Neural network model, but with state
 - How can we borrow ideas from FSMs?
- RNNs are FSMs ...
 - ... with a twist
 - No longer finite in the same sense

RNN

- $S = \mathbb{R}^{d_{hid}}$ hidden state space
- $\Sigma = \mathbb{R}^{d_{in}}$ input state space
- $s_0 \in S$ initial state vector
- $R: \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{hid}} \to \mathbb{R}^{d_{hid}}$ transition function
- Simple definition of R: $R_{Elman}(s, x) = tanh([x, s]W + b)$

RNN

• Map from dense sequence to dense representation

$$-x_1, \ldots, x_n o s_1, \ldots, s_n$$

- For all
$$i \in \{1, \dots, n\}$$

 $s_i = R(s_{i-1}, x)$

- *R* is parameterized, and parameters are shared between all steps
- Example:

$$s_4 = R(s_3, x_4) = \cdots = R(R(R(R(s_0, x_1), x_2), x_3), x_4)$$

RNNs

- Hidden states s_i can be used in different ways
- Similar to finite state machines
 - Acceptor
 - Transducer
 - Encoder
- Output function maps vectors to symbols: $O: \mathbb{R}^{d_{hid}} \to \mathbb{R}^{d_{out}}$
- For example: single layer + softmax $O(s_i) = \operatorname{softmax}(s_iW + b)$

Graphical Representation

Graphical Representation

Training

- RNNs are trained with SGD and Backprop
- Define loss over outputs
 - Depends on supervision and task
- Backpropagation through time (BPTT)
 - Run forward propagation
 - Run backward propagation
 - Update all weights
- Weights are shared between time steps
 - Sum the contributions of each time step to the gradient
- Inefficient
 - Batch helps, common but tricky to implement with variable-size models

RNN: Acceptor Architecture

- Only care about the output from the last hidden state
- Train: supervised, loss on prediction

Language Modeling

- Input: $X = x_1, ..., x_n$
- Goal: compute p(X)
- Bi-gram decomposition:

$$p(X) = \prod_{i=1}^{n} p(x_i \mid x_{i-1})$$

• With RNNs, can do non-Markovian models:

$$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1})$$

RNN: Transducer Architecture

Predict output for every time step

Language Modeling

- Input: $X = x_1, ..., x_n$
- Goal: compute p(X)
- Model:

$$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1})$$
$$p(x_i \mid x_1, \dots, x_{i-1}) = O(\mathbf{s}_i) = O(R(\mathbf{s}_{i-1}, \mathbf{x}_i))$$
$$O(\mathbf{s}_i) = \operatorname{softmax}(s_i \mathbf{W} + \mathbf{b})$$

• Predict next token \hat{y}_i as we go: $\hat{y}_i = \operatorname{argmax}O(s_i)$

RNN: Transducer Architecture

- Predict output for every time step
- Examples:
 - Language modeling

RNN: Encoder Architecture

- Similar to acceptor
- Difference: last state is used as input to another model and not for prediction

$$O(s_i) = s_i \rightarrow y_n = s_n$$

• Example:

- Sentence embedding

Bidirectional RNNs

- RNN decisions are based on historical data only – How can we account for future input?
- When is it relevant? Feasible?

Bidirectional RNNs

- RNN decisions are based on historical data only
 - How can we account for future input?
- When is it relevant? Feasible?
 - When all the input is possible. So not in real-time input, for example.
- Probabilistic model, for example for language modeling:

$$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

Deep RNNs

Can also make RNNs deeper (vertically) to increase the model capacity

RNN: Generator

- Special case of the transducer architecture
- Generation conditioned on s_0
- Probabilistic model:

Example: Caption Generation

- Given: image I •
- Goal: generate caption •
- Set $s_0 = \text{CNN}(I)$
- Model:

$$p(X | I) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1}, I)$$

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"a cat is sitting on a couch with a remote control."

"a woman holding a teddy bear in front of a mirror."

Examples from Karpathy and Fei-Fei 2015

Sequence-to-Sequence

- Connect encoder and generator
- Many alternatives:
 - Set generator s_0^d to encoder output s_n^e
 - Concatenate generator s_0^d with each step input during generation
- Examples:
 - Machine translation
 - Chatbots
 - Dialog systems
- Can also generate other sequences – not only natural language!

Long-range Interactions

- Promise: Learn long-range interactions of language from data
- Example:

How can you not see this movie? You should not see this movie.

- Sometimes: requires "remembering" early state
 - Key signal here is at s_1 , but gradient is at s_n

Long-term Gradients

- Gradient go through (many) multiplications
- OK at end layers \rightarrow close to the loss
- But: issue with early layers
- For example, derivative of tanh

 $\frac{d}{dx} \tanh x = 1 - \tanh^2 x$

- Large activation \rightarrow gradient disappears

 In other activation functions, values can become larger and larger

Exploding Gradients

- Common when there is not saturation in activation (e.g., ReLu) and we get exponential blowup
- Result: reasonable shortterm gradient, but bad long-term ones
- Common heuristic:
 - Gradient clipping: bounding all gradients by maximum value

Vanishing Gradients

- Occurs when multiplying small values
 For example: when tanh saturates
- Mainly affects long-term gradients
- Solving this is more complex

Long Short-term Memory (LSTM)

