
Sequence Prediction and 
Part-of-speech Tagging

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, 
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov



Overview
• POS Tagging: the problem
• Hidden Markov Models (HMM)

– Supervised Learning
– Inference

• The Viterbi algorithm
• Feature-rich models

– Maximum-entropy Markov Models
– Perceptron
– Conditional Random Fields



Parts of Speech
Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

old   older   oldest

slowly

to with

off   up

the some

and or

he its

Numbers

122,312
one

Interjections Ow Eh



POS Tagging
• Words often have more than one POS: back

– The back door = JJ
– On my back = NN
– Win the voters back = RB
– Promised to back the bill = VB

• The POS tagging problem is to determine 
the POS tag for a particular instance of a 
word.



POS Tagging

• Input: Plays well with others
• Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
• Output: Plays/VBZ well/RB with/IN others/NNS
• Uses:

– Text-to-speech (how do we pronounce “lead”?)
– Can write regular expressions like (Det) Adj* N+ over the output for 

phrases, etc.
– As input to or to speed up a full parser
– If you know the tag, you can back off to it in other tasks

Penn Treebank POS tags



Penn TreeBank Tagset
• Possible tags: 45
• Tagging guidelines: 36 pages
• Newswire text



CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there 
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would 
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's 
PRP pronoun, personal hers himself it we them

PRP$ pronoun, possessive her his mine my our ours their thy your 
RB adverb occasionally maddeningly adventurously

RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst 
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to 
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever 
WP WH-pronoun that what whatever which who whom

WP$ WH-pronoun, possessive whose 
WRB Wh-adverb however whenever where why 

Main Tags



Penn TreeBank Tagset
• How accurate are taggers?  (Tag accuracy)

– About 97% currently
– But baseline is already 90%

• Baseline is performance of simplest possible method
– Tag every word with its most frequent tag
– Tag unknown words as nouns

– Partly easy because
• Many words are unambiguous
• You get points for them (the, a, etc.) and for 

punctuation marks!
– Upperbound: probably 2% annotation errors



Hard Cases are Hard

• Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP 
to/TO joining/VBG

• All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN 
the/DT corner/NN

• Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD



How Difficult is POS Tagging?
• About 11% of the word types in the Brown 

corpus are ambiguous with regard to part 
of speech

• But they tend to be very common words. 
E.g., that
– I know that he is honest = IN
– Yes, that play was nice = DT
– You can’t go that far = RB

• 40% of the word tokens are ambiguous



The Tagset
• Wait, do we really need all these tags?
• What about other languages?  

– Each language has its own tagset



Tagsets in Different Languages

[Petrov et al. 2012]



The Tagset
• Wait, do we really need all these tags?
• What about other languages?  

– Each language has its own tagset
• But why is this bad?
• Differences in downstream tasks
• Harder to do language transfer



Alternative: The Universal Tagset

• 12 tags:
– NOUN, VERB, ADJ, ADV, PRON, DET, ADP, 

NUM, CONJ, PRT, ‘.’, and X.
• Deterministic conversion from tagsets in 

22 languages.
• Better unsupervised parsing results
• Was used to transfer parsers

[Petrov et al. 2012]



Sources of Information
• What are the main sources of information 

for POS tagging?
– Knowledge of neighboring words

• Bill saw  that  man yesterday
• NNP VB(D)      DT    NN   NN
• VB     NN  IN      VB    NN

– Knowledge of word probabilities
• man is rarely used as a verb….

• The latter proves the most useful, but the 
former also helps



Word-level Features
• Can do surprisingly well just looking at a 

word by itself:
– Word the: the ® DT
– Lowercased words: 

importantly ® RB
– Prefixes unfathomable: un- ® JJ
– Suffixes Importantly: -ly ® RB
– Capitalization Meridian: CAP ® NNP
– Word shapes 35-year: d-x ® JJ



Sequence-to-Sequence
Consider the problem of jointly modeling a pair of strings

– E.g.: part of speech tagging
DT    NNP      NN   VBD VBN  RP  NN    NNS
The Georgia branch had taken on loan commitments …

DT     NN     IN     NN        VBD   NNS      VBD
The average of interbank offered rates plummeted …

Q: How do we map each word in  the input sentence onto the 
appropriate label?
A: We can learn a joint distribution:

And then compute the most likely assignment:

p(x1 . . . xn, y1 . . . yn)

arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)



Classic Solution: HMMs
We want a model of sequences y and observations x

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

where y0=START and we call 𝑞 𝑦𝑖	 	𝑦%&') the transition
distribution and 𝑒 𝑥𝑖	 	𝑦𝑖) the emission (or observation) 
distribution.

y1 y2 yn

x1 x2 xn

y0
Emission

Transition



Model Assumptions

• Tag/state sequence is generated by a Markov model
• Words are chosen independently, conditioned only on 

the tag/state
• These are totally broken assumptions for POS: why?

y1 y2 yn

x1 x2 xn

y0

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Emission
Transition



HMM for POS Tagging

• HMM Model:
– States 𝑌 = {DT, NNP, NN, ... } are the POS tags
– Observations 𝑋 = V are words
– Transition dist’n 𝑞 𝑦% 𝑦%&') models the tag sequences
– Emission dist’n 𝑒 𝑥% 𝑦%) models words given their POS

The Georgia branch had taken on loan commitments …

DT     NNP        NN        VBD    VBN   RP   NN        NNS



HMM for POS Tagging

• HMM Model:
– States 𝑌 = {DT, NNP, NN, ... } are the POS tags
– Observations 𝑋 = V are words
– Transition dist’n 𝑞 𝑦% 𝑦%&') models the tag sequences
– Emission dist’n 𝑒 𝑥% 𝑦%) models words given their POS

The Georgia branch had taken on loan commitments …

DT     NNP        NN        VBD    VBN   RP   NN        NNS



HMM Inference and Learning
• Learning

– Maximum likelihood: transitions 𝑞 and emissions 𝑒

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

• Inference
– Viterbi

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn)

– Forward backward



Learning: Maximum Likelihood

• Maximum likelihood methods for estimating 
transitions q and emissions e

• Will these estimates be high quality?
– Which is likely to be more sparse, 𝑞 or 𝑒?

• Smoothing?

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)



Learning: Low Frequency Words

• Typically, for transitions:
– Linear Interpolation

• However, other approaches used for emissions
– Step 1: Split the vocabulary

• Frequent words: appear more than 𝑀 (often 5) times
• Low frequency: everything else

– Step 2: Map each low frequency word to one of a small, finite 
set of possibilities

• For example, based on prefixes, suffixes, etc.
– Step 3: Learn model for this new space of possible word 

sequences

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

q(yi|yi�1) = �1qML(yi|yi�1) + �2qML(yi)



Another Example: Chunking
• Goal: Segment text into spans with certain 

properties
• For example, named entities: PER, ORG, and 

LOC
Germany ’s representative to the European Union ’s veterinary committee 
Werner Zwingman said on Wednesday consumers should… 

[Germany]LOC ’s representative to the [European Union]ORG ’s veterinary 
committee [Werner Zwingman]PER said on Wednesday consumers should… 

How is this a sequence tagging problem?



Named Entity Recognition

• HMM Model:
– States 𝑌 = {NA,BL,CL,BO,CO,BP,CP} represent 

beginnings (BL,BO,BP) and continuations (CL,CO,CP) of 
chunks, as well as other words (NA)

– Observations 𝑋 = V are words
– Transition dist’n 𝑞(𝑦%|𝑦%&') models the tag sequences
– Emission dist’n 𝑒(𝑥%|𝑦%) models words given their type

Germany ’s representative to the European Union ’s veterinary committee 
Werner Zwingman said on Wednesday consumers should… 

[Germany]LOC ’s representative to the [European Union]ORG ’s veterinary 
committee [Werner Zwingman]PER said on Wednesday consumers should… 



Low Frequency Words: An 
Example

• Named Entity Recognition [Bickel et. al, 1999]
– Used the following word classes for infrequent words:

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class Example Intuition

twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization information
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other words

18



Low Frequency Words: An 
Example

• NA = No entity 
• SO = Start Organization
• CO = Continue Organization 
• SL  = Start Location 
• CL  = Continue Location
• …

Profits/NA soared/NA at/NA Boeing/SO Co./CO ,/NA easily/NA topping/NA 
forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP 
Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA



Low Frequency Words: An 
Example

• NA = No entity 
• SO = Start Organization
• CO = Continue Organization 
• SL  = Start Location 
• CL  = Continue Location
• …

Profits/NA soared/NA at/NA Boeing/SO Co./CO ,/NA easily/NA topping/NA 
forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP 
Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA 
forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP 
initCap/CP announced/NA first/NA quarter/NA results/NA ./NA



HMM Inference and Learning
• Learning

– Maximum likelihood: transitions q and emissions e

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

• Inference
– Viterbi

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn)

– Forward backward



Inference (Decoding)
• Problem: find the most likely (Viterbi) sequence under the model 

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

• Given model parameters, we can score any sequence pair

NNP VBZ NN NNS CD NN .
Fed    raises interest rates    0.5      percent .

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ)…..
• In principle, we’re done – list all possible tag sequences, score 

each one, pick the best one (the Viterbi state sequence) 

NNP VBZ NN NNS CD NN . 𝑙𝑜𝑔𝑝(𝑥, 𝑦) 	= 	−23
NNP NNS NN NNS CD NN . log	(𝑥, 𝑦) 	= 	−29

NNP VBZ VB NNS CD NN . log	𝑝(𝑥, 𝑦) 	= 	−27

Any 
issue?



Finding the Best Trajectory 
• Too many trajectories (state sequences) to list
• Option 1: Beam Search

– A beam is a set of partial hypotheses
– Start with just the single empty trajectory
– At each derivation step:

• Consider all continuations of previous hypotheses
• Discard most, keep top k

<>
Fed:N

Fed:V

Fed:J

raises:N
raises:V
raises:N
raises:V

• Beam search often works OK in practice, but …
• … but sometimes you want the optimal answer
• … and there’s usually a better option than naïve beams



The State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START       Fed           raises       interest         rates         STOP
^                N               V              V                   J               V

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)q(V|V)

e(STOP|V)



Scoring a Sequence

• Define π(i,yi) to be the max score of a sequence of length i
ending in tag yi

• We can now design an efficient algorithm. 
– How?

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

= max

yi�1

e(xi|yi)q(yi|yi�1) max

y1...yi�2

p(x1 . . . xi�1, y1 . . . yi�1)

= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)



The Viterbi Algorithm
Dynamic program for computing (for all i)

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

⇡(0, y0) =

⇢
1 if y0 == START
0 otherwise

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

bp(i, yi) = argmax

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

Iterative computation:

For i = 1 … n:
// Store score

// Store back-pointerWhat 
for?



The State Lattice / Trellis

^

N

V

$

START

^

N

V

$

Fed

^

N

V

STOP

^

N

V

interest

^

N

V

raises
from \ to ^ N V $

^ 0.0 0.6 0.4 0.0

N 0.0 0.4 0.2 0.4

V 0.0 0.6 0.1 0.3

$ 0.0 0.0 0.0 1.0

Tie breaking:
Prefer first

emissions START Fed raises interest STOP

^ 1.0 0.0 0.0 0.0 0.0

N 0.0 0.45 0.1 0.45 0.0

V 0.0 0.0 0.7 0.4 0.0

$ 0.0 0.0 0.0 0.0 1.0

$ $ $



The State Lattice / Trellis

^

N

V

$

START

^

N

V

$

Fed

^

N

V

STOP

^

N

V

interest

^

N

V

raises
from \ to ^ N V $

^ 0.0 0.6 0.4 0.0

N 0.0 0.4 0.2 0.4

V 0.0 0.6 0.1 0.3

$ 0.0 0.0 0.0 1.0

π = 1 
bp = null

π = 0 
bp = ^

π = 0 
bp = ^

π = 0 
bp = ^

π = 0 
bp = null

π = 0.27 
bp = ^

π = 0.0108 
bp = N

π = 0.010206
bp = V

π = 0 
bp = null

π = 0
bp = ^

π = 0 
bp = ^

π = 0.0378 
bp = N

π = 0.001512
bp = V

π = 0
bp = null

π = 0
bp = ^

π = 0
bp = ^

Tie breaking:
Prefer first

π = 0 
bp = ^

π = 0
bp = ^

π = 0 
bp = ^
π = 0.0040824
bp = N

emissions START Fed raises interest STOP

^ 1.0 0.0 0.0 0.0 0.0

N 0.0 0.45 0.1 0.45 0.0

V 0.0 0.0 0.7 0.4 0.0

$ 0.0 0.0 0.0 0.0 1.0

$ $ $



The Viterbi Algorithm: Runtime
• In term of sentence length n?

– Linear
• In term of number of states |K|?

– Polynomial

• Specifically:

• Total runtime:

• Q: Is this a practical algorithm?
• A: depends on |K|….

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

O(n|K|) entries in ⇡(i, yi)

O(n|K|2)
O(|K|) time to compute each ⇡(i, yi)



Tagsets in Different Languages

[Petrov et al. 2012]

2942 = 86436

452 = 2045

112 = 121



HMM Inference and Learning
• Learning

– Maximum likelihood: transitions q and emissions e

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

• Inference
– Viterbi

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn)

– Forward backward



What about n-gram Taggers?
• States encode what is relevant about the past
• Transitions P(si | si-1) encode well-formed tag sequences

– In a bigram tagger, states = tags

– In a trigram tagger, states = tag pairs

<¨>

s1 s2 sn

x1 x2 xn

s0

< y1> < y2> < yn>

<¨,¨>

s1 s2 sn

x1 x2 xn

s0

< ¨, y1> < y1, y2> < yn-1, yn>



The State Lattice / Trellis

N,N

$

START     Fed   raises   interest  …
^ N   D V …

^,^

N,V

N,D

D,V

…

…

N,N

$

^,^

^,N

N,D

D,V

…

…

N,N

$

^,^

^,V

N,D

D,V

…

…

N,N

$

^,^

^,V

N,D

D,V

…

…

… … … …

e(Fed|N)

e(raises|D)

e(interest|V)

Not all 
edges are 
allowed



Tagsets in Different Languages

[Petrov et al. 2012]

2942 = 86436

452 = 2045

112 = 121

2944 = 7471182096

454 = 4100625

114 = 14641



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

• A carefully smoothed trigram tagger
• Suffix trees for emissions

Most errors 
on unknown 

words



Re-visit P(x | y)
• Reality check:

– What if we drop the sequence?
• Re-visit P(x | y)?

– Most frequent tag:
• 90.3% with a so-so unknown word model

– Can we do better?



What about better features?
• Looking at a word and its environment

– Add in previous / next word the __
– Previous / next word shapes X __ X
– Occurrence pattern features [X: x X occurs]
– Crude entity detection __ ….. (Inc.|Co.)
– Phrasal verb in sentence? put …… __
– Conjunctions of these things

• Uses lots of features: > 200K



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

• What does this tell us about sequence models?
• How do we add more features to our sequence 

models?



MEMM Taggers
One step up: also condition on previous tags:

• Training:
– Train 𝑝(𝑦%|𝑦%&', 𝑥1…𝑥@) as a discrete log-linear (MaxEnt) model

• Scoring:

• This is referred to as an MEMM tagger [Ratnaparkhi 96]

p(y1 . . . yn|x1 . . . xn) =
nY

i=1

p(yi|y1 . . . yi�1, x1 . . . xn)

=
nY

i=1

p(yi|yi�1, x1 . . . xn)

p(y
i

|y
i�1, x1 . . . xn

) =
e

w·�(x1...xn,i,yi�1,yi)

P
y

0 e
w·�(x1...xn,i,yi�1,y0)



HMM vs. MEMM
• HMM models joint distribution:

• MEMM models conditioned distribution:

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

p(y1 . . . yn|x1 . . . xn) =
nY

i=1

p(yi|y1 . . . yi�1, x1 . . . xn)



Decoding MEMM Taggers
• Scoring:

• Beam search is effective – why?
• Guarantees? Optimal?
• Can we do better?

p(y
i

|y
i�1, x1 . . . xn

) =
e

w·�(x1...xn,i,yi�1,yi)

P
y

0 e
w·�(x1...xn,i,yi�1,y0)



The State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START       Fed           raises       interest         rates         STOP
^                N               V              V                   J               V

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)q(V|V)

e(STOP|V)



The MEMM State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START       Fed           raises       interest         rates         STOP
^                N               V              V                   J               V

q(V|V)



Decoding MEMM Taggers
• Decoding MaxEnt taggers:

– Just like decoding HMMs
– Viterbi, beam search

• Viterbi algorithm (HMMs):
– Define 𝜋(𝑖, 𝑦𝑖) to be the max score of a sequence of 

length 𝑖 ending in tag 𝑦𝑖

• Viterbi algorithm (MaxEnt):
– Can use same algorithm for MEMMs, just need to 

redefine 𝜋(𝑖, 𝑦𝑖) !

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

⇡(i, yi) = max

yi�1

p(yi|yi�1, x1 . . . xm)⇡(i� 1, yi�1)



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

[Ratnaparkhi 1996]



Feature Development

NN/JJ NN
official knowledge

VBD RP/IN DT NN
made  up   the story

RB   VBD/VBN NNS
recently   sold   shares

[Toutanova and Manning 2000]

Common errors:



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

[Toutanova and Manning 2000]



Locally Normalized Models
• So far:

– Probabilities are product of locally 
normalized probabilities

– Is this bad?
A

B

C

from \ to A B C

A 0.4 0.2 0.4

B 0.0 1.0 0.0

C 0.6 0.2 0.2

A

B

C

A

B

C

0.4 0.4

1.0
0.4

0.2 AAA à 0.4 x 0.4 = 0.16
ABB à 0.2 x 1.0 = 0.2

B à B transitions are likely to take over 
even if rarely observed!



Locally Normalized Models
• So far:

– Probabilities are product of locally 
normalized probabilities

– Is this bad?
• Label bias

– MEMM taggers’ local scores can be near one 
without having both good “transitions” and 
“emissions”

– This means that often evidence doesn’t flow 
properly



Global Discriminative Taggers
• Newer, higher-powered discriminative 

sequence models
– CRFs (also Perceptrons)
– Do not decompose training into independent 

local regions
– Can be deathly slow to train – require 

repeated inference on training set

* Relatively slow. NN models are much slower.



Linear Models: Perceptron
• The perceptron algorithm

– Iteratively processes the data, reacting to training errors
– Can be thought of as trying to drive down training error

• The (online structured) perceptron algorithm:
– Start with zero weights
– Visit training instances (xi,yi) one by one

• Make a prediction

• If correct (y*==yi): 
– no change, goto next example!

• If wrong: 
– adjust weights:

• Challenge: How to compute argmax efficiently?

y⇤ = argmax
y

w · �(xi, y)

w = w + �(xi, yi)� �(xi, y
⇤)

Tag Sequence:
y=𝑦1…𝑦𝑚

Sentence: 𝑥 = 𝑥1…𝑥𝑛



Decoding
• Linear Perceptron

– Features must be local, for 𝑥 = 𝑥1…𝑥𝑛, and 𝑦 = 𝑦1…𝑦𝑚

y

⇤
= argmax

y
w · �(x, y) · ✓

�(x, y) =
nX

j=1

�(x, j, yj�1, yj)



The MEMM State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START       Fed           raises       interest         rates         STOP
^                N               V              V                   J               V

q(V|V)



The  Perceptron State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START       Fed           raises       interest         rates         STOP
^                N               V              V                   J               V

w�Φ(x,3,V,V)



Decoding
• Linear Perceptron

– Features must be local, for x=x1…xm, and s=s1…sm

– Define 𝜋(𝑖, 𝑦𝑖) to be the max score of a sequence of length 𝑖
ending in tag 𝑦𝑖

• Viterbi algorithm (HMMs):

• Viterbi algorithm (Maxent):
�(i, si) = max

si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

⇡(i, si) = max

si�1

e(xi|si)q(si|si�1)⇡(i� 1, si�1)

y

⇤
= argmax

y
w · �(x, y) · ✓

�(x, y) =
nX

j=1

�(x, j, yj�1, yj)

⇡(i, yi) = max

yi�1

w · �(x, i, yi�i, yi) + ⇡(i� 1, yi�1)



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

[Collins 2002]



Conditional Random Fields (CRFs)

• What did we lose with the Perceptron?
– No probabilities
– Let’s try again with a probabilistic model



CRFs
• Maximum entropy (logistic regression)

– Learning: maximize the (log) conditional likelihood of training 
data

– Computational challenges?
• Most likely tag sequence,  normalization constant, gradient

[Lafferty et al. 2001]

p(y|x;w) = exp

(

w · �(x, y)
)P

y0 exp (w · �(x, y0)
)

Sentence: 𝑥 = 𝑥1…𝑥𝑛

Tag Sequence:	𝑦 = 𝑦1…𝑦𝑛

@

@wj
L(w) =

mX

i=1

 
�j(x

(i)
, y

(i))�
X

y

p(y|xi;w)�j(x
(i)
, y)

!
� �wj

{(x(i), y(i))}mi=1



Decoding
• CRFs

– Features must be local, for 𝑥 = 𝑥1…𝑥𝑛, and 𝑦 = 𝑦1…𝑦𝑛

• Same as linear Perceptron!

y

⇤
= argmax

y
p(y|x;w)

argmax

y

exp

(

w ·�(x, y)
)P

y0 exp (w ·�(x, y0)
)

= argmax

y
exp

(

w ·�(x, y)
)

= argmax

y
w ·�(x, y)

⇡(i, yi) = max

yi�1

�(x, i, yi�i, yi) + ⇡(i� 1, yi�1)

�(x, y) =
nX

j=1

�(x, j, yj�1, yj)



CRFs: Computing Normalization

• Forward algorithm! Remember HMM case:

Define 𝑛𝑜𝑟𝑚(𝑖, 𝑦𝑖) to sum of scores for sequences ending in position 𝑖

p(y|x;w) = exp

(

w ·�(x, y)
)P

y0 exp (w ·�(x, y0)
)

X

y0

exp

�
w ·�(x, y0)

�
=

X

y0

exp

0

@
X

j

w · �(x, j, yj�1, yj)

1

A

=

X

y0

Y

j

exp

(

w · �(x, j, yj�1, yj))

norm(i, yi) =

X

yi�1

exp

(

w · �(x, i, yi�1, yi))norm(i� 1, yi�1)

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

�(x, y) =
nX

j=1

�(x, j, yj�1, yj)



CRFs: Computing Gradient

• Can compute with the Forward Backward algorithm
See notes for full details!

p(y|x;w) = exp

(

w ·�(x, y)
)P

y0 exp (w ·�(x, y0)
)

X

y

p(y|xi;w)�j(xi, y)

�(x, y) =
nX

j=1

�(x, j, yj�1, yj)

@

@wj
L(w) =

mX

i=1

 
�j(x

(i)
, y

(i))�
X

y

p(y|xi;w)�j(x
(i)
, y)

!
� �wj

=
X

y

p(y|xi;w)
nX

k=1

�j(xi, k, yk�1, yk)

=
nX

k=1

X

a,b

X

y:yk�1=a,yk=b

p(y|xi;w)�j(xi, k, yk�1, yk)



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

[Sun 2014]



Cyclic Network
• Train two MEMMs, 

combine scores
• And be very careful

• Tune regularization
• Try lots of different 

features
• See paper for full 

details

Cyclic Tagging
[Toutanova et al 03]

 Another idea: train a bi-directional MEMM

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via ). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via ). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

 And be careful 
experimentally!
 Try lots of features on 

dev. set
 Use L2 regularization
 see paper...

[Toutanova et al. 2003]



Some Numbers
• Rough accuracies:

– Most freq tag: ~90% / ~50%
– Trigram HMM: ~95% / ~55%
– TnT (Brants, 2000): 96.7% / 85.5%
– MaxEnt P(y | x) 93.7% / 82.6%
– MEMM tagger 1: 96.7% / 84.5%
– MEMM tagger 2: 96.8% / 86.9%
– Perceptron: 97.1%
– CRF++: 97.3%
– Cyclic tagger: 97.2% / 89.0%
– Upper bound: ~98%

[Toutanova et al. 2003]



Summary
• For tagging, the change from generative to 

discriminative model does not by itself result in 
great improvement 

• One profits from models for specifying 
dependence on overlapping features of the 
observation such as spelling, suffix analysis, etc.

• MEMMs allow integration of rich features of the 
observations

• This additional power (of the MEMM ,CRF, 
Perceptron models) has been shown to result in 
improvements in accuracy

• The higher accuracy of discriminative models 
comes at the price of much slower training



Domain Effects
• Accuracies degrade outside of domain

– Up to triple error rate
– Usually make the most errors on the things you care 

about in the domain (e.g. protein names)

• Open questions
– How to effectively exploit unlabeled data from a new 

domain (what could we gain?)
– How to best incorporate domain lexica in a principled 

way (e.g. UMLS specialist lexicon, ontologies)


