CS5740: Natural Language Processing Spring 2017

Sequence Prediction and Part-of-speech Tagging

Instructor: Yoav Artzi

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview

- POS Tagging: the problem
- Hidden Markov Models (HMM)
 - Supervised Learning
 - Inference
 - The Viterbi algorithm
- Feature-rich models
 - Maximum-entropy Markov Models
 - Perceptron
 - Conditional Random Fields

Parts of Speech

Open class (lexical) words								
Nouns		Verbs	Adjectives old older oldest					
Proper	Common	Main	Adverbs	slowly				
IBM	cat / cats	see						
Italy	snow	registered	Numbers	<i>r</i>	nore			
			122,312					
Closed class	(functional)	- -	one					
		Modals						
Determiners the some		can	Preposition					
Conjunctions and or		had	Particles	off up	more			
Pronouns	he its		Interjection	s Ow Eh				

POS Tagging

- Words often have more than one POS: back
 - The <u>back</u> door = JJ
 - On my <u>back</u> = NN
 - Win the voters <u>back</u> = RB
 - Promised to \underline{back} the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

Penn Treebank POS tags

- Input: Plays with others well
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS ullet
- Plays/VBZ well/RB with/IN others/NNS Output: ullet

- **Uses:** ullet
 - Text-to-speech (how do we pronounce "lead" ?)
 - Can write regular expressions like (Det) Adj* N+ over the output for phrases, etc.
 - As input to or to speed up a full parser
 - If you know the tag, you can back off to it in other tasks

Penn TreeBank Tagset

- Possible tags: 45
- Tagging guidelines: 36 pages
- Newswire text

CC	conjunction, coordinating	and both but either or					
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one Waln lags	5				
DT	determiner	a all an every no that the					
EX	existential there	there					
FW	foreign word	gemeinschaft hund ich jeux					
IN	preposition or conjunction, subordinating	among whether out on by if					
JJ	adjective or numeral, ordinal	third ill-mannered regrettable					
JJR	adjective, comparative	braver cheaper taller					
JJS	adjective, superlative	bravest cheapest tallest					
MD	modal auxiliary	can may might will would					
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity					
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool					
NNPS	noun, proper, plural	Americans Materials States					
NNS	noun, common, plural	undergraduates bric-a-brac averages					
POS	genitive marker	' 'S					
PRP	pronoun, personal	hers himself it we them					
PRP\$	pronoun, possessive	her his mine my our ours their thy your					
RB	adverb	occasionally maddeningly adventurously					
RBR	adverb, comparative	further gloomier heavier less-perfectly					
RBS	adverb, superlative	best biggest nearest worst					
RP	particle aboard away back by on open through						
то	"to" as preposition or infinitive marker	to					
UH	interjection	huh howdy uh whammo shucks heck					
VB	verb, base form	ask bring fire see take					
VBD	verb, past tense	pleaded swiped registered saw					
VBG	verb, present participle or gerund	stirring focusing approaching erasing					
VBN	verb, past participle	dilapidated imitated reunifed unsettled					
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone					
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses					
WDT	WH-determiner	that what whatever which whichever					
WP	WH-pronoun	that what whatever which who whom					
WP\$	WH-pronoun, possessive	whose					
WRB	Wh-adverb	however whenever where why					

Penn TreeBank Tagset

- How accurate are taggers? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of simplest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (*the, a,* etc.) and for punctuation marks!
 - Upperbound: probably 2% annotation errors

Hard Cases are Hard

- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

How Difficult is POS Tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words.
 E.g., *that*
 - I know that he is honest = IN
 - Yes, *that* play was nice = DT
 - You can't go that far = RB
- 40% of the word tokens are ambiguous

The Tagset

- Wait, do we really need all these tags?
- What about other languages?
 - Each language has its own tagset

Tagsets in Different Languages

Language	Source	# Tags
Arabic	PADT/CoNLL07 (Hajič et al., 2004)	21
Basque	Basque3LB/CoNLL07 (Aduriz et al., 2003)	64
Bulgarian	BTB/CoNLL06 (Simov et al., 2002)	54
Catalan	CESS-ECE/CoNLL07 (Martí et al., 2007)	54
Chinese	Penn ChineseTreebank 6.0 (Palmer et al., 2007)	34
Chinese	Sinica/CoNLL07 (Chen et al., 2003)	294
Czech	PDT/CoNLL07 (Böhmová et al., 2003)	63
Danish	DDT/CoNLL06 (Kromann et al., 2003)	25
Dutch	Alpino/CoNLL06 (Van der Beek et al., 2002)	12
English	PennTreebank (Marcus et al., 1993)	45
French	FrenchTreebank (Abeillé et al., 2003)	30
German	Tiger/CoNLL06 (Brants et al., 2002)	54
German	Negra (Skut et al., 1997)	54
Greek	GDT/CoNLL07 (Prokopidis et al., 2005)	38
Hungarian	Szeged/CoNLL07 (Csendes et al., 2005)	43
Italian	ISST/CoNLL07 (Montemagni et al., 2003)	28
Japanese	Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80
Japanese	Kyoto4.0 (Kurohashi and Nagao, 1997)	42
Korean	Sejong (http://www.sejong.or.kr)	187
Portuguese	Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22
Russian	SynTagRus-RNC (Boguslavsky et al., 2002)	11
Slovene	SDT/CoNLL06 (Džeroski et al., 2006)	29
Spanish	Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47
Swedish	Talbanken05/CoNLL06 (Nivre et al., 2006)	41
Turkish	METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31

[Petrov et al. 2012]

The Tagset

- Wait, do we really need all these tags?
- What about other languages?
 - Each language has its own tagset
 - But why is this bad?
 - Differences in downstream tasks
 - Harder to do language transfer

Alternative: The Universal Tagset

- 12 tags:
 - NOUN, VERB, ADJ, ADV, PRON, DET, ADP, NUM, CONJ, PRT, '.', and X.
- Deterministic conversion from tagsets in 22 languages.
- Better unsupervised parsing results
- Was used to transfer parsers

Sources of Information

- What are the main sources of information for POS tagging?
 - Knowledge of neighboring words

• Bill	saw	that	man	yesterday
• NNP	VB(D)	DT	NN	NN
• VB	NN	IN	VB	NN

- Knowledge of word probabilities
 - *man* is rarely used as a verb....
- The latter proves the most useful, but the former also helps

Word-level Features

- Can do surprisingly well just looking at a word by itself:
 - Word the: the \rightarrow DT
 - Lowercased words:

importantly $\rightarrow RB$

- Prefixes unfathomable: $un \rightarrow JJ$
- Suffixes Importantly: $-Iy \rightarrow RB$
- Capitalization Meridian: CAP \rightarrow NNP
- Word shapes 35-year: $d-x \rightarrow JJ$

Sequence-to-Sequence

Consider the problem of jointly modeling a pair of strings

- E.g.: part of speech tagging

DT	NNP	NN	VBD	VBN	RP	NN	NNS commitments
The	Georgia	branch	had	taken	on	Ioan	
DT	NN	IN	NN	k	VBD	NNS	VBD
The	average	of	interban		offered	rates	plummeted …

Q: How do we map each word in the input sentence onto the appropriate label?

A: We can learn a joint distribution:

$$p(x_1 \dots x_n, y_1 \dots y_n)$$

And then compute the most likely assignment:

$$\arg \max_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

Classic Solution: HMMs

We want a model of sequences y and observations x

where $y_0 = START$ and we call $q(y_i | y_{i-1})$ the **transition** distribution and $e(x_i | y_i)$ the **emission** (or observation) distribution.

Model Assumptions

- Tag/state sequence is generated by a Markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions for POS: why?

HMM for POS Tagging

The Georgia branch had taken on loan commitments ...

DT NNP NN VBD VBN RP NN NNS

- HMM Model:
 - States Y =
 - Observations X =
 - Transition dist'n $q(y_i|y_{i-1})$ models
 - Emission dist'n $e(x_i|y_i)$ models

HMM for POS Tagging

The Georgia branch had taken on loan commitments ...

DT NNP NN VBD VBN RP NN NNS

- HMM Model:
 - States $Y = \{DT, NNP, NN, ...\}$ are the POS tags
 - Observations X = V are words
 - Transition dist'n $q(y_i|y_{i-1})$ models the tag sequences
 - Emission dist'n $e(x_i|y_i)$ models words given their POS

HMM Inference and Learning

- Learning
 - Maximum likelihood: transitions q and emissions e

n

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Inference
 - Viterbi

$$y^* = \arg \max_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

- Forward backward

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

Learning: Maximum Likelihood

$$p(x_1...x_n, y_1...y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

Maximum likelihood methods for estimating transitions q and emissions e

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} \qquad e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$$

- Will these estimates be high quality?
 Which is likely to be more sparse, q or e?
- Smoothing?

Learning: Low Frequency Words

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Typically, for transitions:
 - Linear Interpolation

$$q(y_i|y_{i-1}) = \lambda_1 q_{ML}(y_i|y_{i-1}) + \lambda_2 q_{ML}(y_i)$$

- However, other approaches used for emissions
 - Step 1: Split the vocabulary
 - Frequent words: appear more than M (often 5) times
 - Low frequency: everything else
 - Step 2: Map each low frequency word to one of a small, finite set of possibilities
 - For example, based on prefixes, suffixes, etc.
 - Step 3: Learn model for this new space of possible word sequences

Another Example: Chunking

- Goal: Segment text into spans with certain properties
- For example, named entities: PER, ORG, and LOC

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...

[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should...

How is this a sequence tagging problem?

Named Entity Recognition

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...

[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should...

- HMM Model:
 - States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings (BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well as other words (NA)
 - Observations X = V are words
 - Transition dist'n $q(y_i|y_{i-1})$ models the tag sequences
 - Emission dist'n $e(x_i|y_i)$ models words given their type

Low Frequency Words: An Example

- Named Entity Recognition [Bickel et. al, 1999]
 - Used the following word classes for infrequent words:

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	М.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Low Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SO Co./CO ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SO = Start Organization
- CO = Continue Organization
- SL = Start Location
- CL = Continue Location
- ...

Low Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SO Co./CO ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SO = Start Organization
- CO = Continue Organization
- SL = Start Location
- CL = Continue Location
- ...

HMM Inference and Learning

- Learning
 - Maximum likelihood: transitions q and emissions e

n

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Inference
 - Viterbi

$$y^* = \arg \max_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

- Forward backward

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

Inference (Decoding)

• Problem: find the most likely (Viterbi) sequence under the model

$$y^* = \arg \max_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

• Given model parameters, we can score any sequence pair

NNP	VBZ	NN	NNS	CD	NN .
Fed	raises	interest	rates	0.5	percent.

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

 In principle, we're done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NN . $rac{1}{rac{1$

Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search
 - A beam is a set of partial hypotheses
 - Start with just the single empty trajectory
 - At each derivation step:
 - Consider all continuations of previous hypotheses
 - Discard most, keep top k

- Beam search often works OK in practice, but ...
 - ... but sometimes you want the optimal answer
 - ... and there's usually a better option than naïve beams

Scoring a Sequence

$$y^{*} = \arg \max_{y_{1}...y_{n}} p(x_{1}...x_{n}, y_{1}...y_{n})$$
$$p(x_{1}...x_{n}, y_{1}...y_{n}) = q(STOP|y_{n}) \prod_{i=1}^{n} q(y_{i}|y_{i-1})e(x_{i}|y_{i})$$

- Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag y_i

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

=
$$\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

=
$$\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

We can now design an efficient algorithm.
 How?

The Viterbi Algorithm

Dynamic program for computing (for all i)

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

Iterative computation:

What

for?

$$\pi(0, y_0) = \begin{cases} 1 \text{ if } y_0 == START \\ 0 \text{ otherwise} \end{cases}$$

For i = 1 ... n:
// Store score
$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

// Store back-pointer
$$bp(i, y_i) = \arg\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

The State Lattice / Trellis

Tie breaking: Prefer first

START	Fed ra		а	ises	interest		STOP				
from \ to	^	Ν	V	\$		emissions	START	Fed	raises	interest	STOP
^	0.0	0.6	0.4	0.0		^	1.0	0.0	0.0	0.0	0.0
Ν	0.0	0.4	0.2	0.4		Ν	0.0	0.45	0.1	0.45	0.0
V	0.0	0.6	0.1	0.3		V	0.0	0.0	0.7	0.4	0.0
\$	0.0	0.0	0.0	1.0		\$	0.0	0.0	0.0	0.0	1.0
Tie breaking: Prefer first

The State Lattice / Trellis

$$\begin{array}{c} & \Pi = 1 \\ & bp = null \end{array} \begin{array}{c} & \Pi = 0 \\ & Bp = null \end{array} \begin{array}{c} & \Pi = 0 \\ & Bp = null \end{array} \begin{array}{c} & \Pi = 0 \\ & Bp = null \end{array} \begin{array}{c} & \Pi = 0 \\ & Bp = null \end{array} \begin{array}{c} & \Pi = 0 \\ & Bp = null \end{array}$$
 \end{array}

START	Fed			r	raises			erest		STOP	
from \ to	^	Ν	V	\$		emissions	START	Fed	raises	interest	STOP
^	0.0	0.6	0.4	0.0		^	1.0	0.0	0.0	0.0	0.0
Ν	0.0	0.4	0.2	0.4		Ν	0.0	0.45	0.1	0.45	0.0
V	0.0	0.6	0.1	0.3		V	0.0	0.0	0.7	0.4	0.0
\$	0.0	0.0	0.0	1.0		\$	0.0	0.0	0.0	0.0	1.0

The Viterbi Algorithm: Runtime

- In term of sentence length n?
 Linear
- In term of number of states |K|?
 Polynomial

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

• Specifically:

 $O(n|\mathcal{K}|)$ entries in $\pi(i, y_i)$

 $O(|\mathcal{K}|)$ time to compute each $\pi(i, y_i)$

- Total runtime: $O(n|\mathcal{K}|^2)$
- Q: Is this a practical algorithm?
- A: depends on |K|....

Tagsets in Different Languages

Source	# Tags	
PADT/CoNLL07 (Hajič et al., 2004)	21	
Basque3LB/CoNLL07 (Aduriz et al., 2003)	64	
BTB/CoNLL06 (Simov et al., 2002)	54	
CESS-ECE/CoNLL07 (Martí et al., 2007)	54	
Penn ChineseTreebank 6.0 (Palmer et al., 2007)	24	
Sinica/CoNLL07 (Chen et al., 2003)	294	$294^2 = 86436$
PDT/CoNLL07 (Böhmová et al., 2003)	63	
DDT/CoNLL06 (Kromann et al., 2003)	25	
Alpino/CoNLL06 (Van der Beek et al., 2002)	10	
PennTreebank (Marcus et al., 1993)	45	$45^2 = 2045$
FrenchTreebank (Abeillé et al., 2003)	30	
Tiger/CoNLL06 (Brants et al., 2002)	54	
Negra (Skut et al., 1997)	54	
GDT/CoNLL07 (Prokopidis et al., 2005)	38	
Szeged/CoNLL07 (Csendes et al., 2005)	43	
ISST/CoNLL07 (Montemagni et al., 2003)	28	
Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80	
Kyoto4.0 (Kurohashi and Nagao, 1997)	42	
Sejong (http://www.sejong.or.kr)	187	
Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22	
SynTagRus-RNC (Boguslavsky et al., 2002)	11	$11^2 = 121$
SDT/CoNLL06 (Džeroski et al., 2006)	20	
Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47	
Talbanken05/CoNLL06 (Nivre et al., 2006)	41	
METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31	[Petrov et al. 2012
	Source PADT/CoNLL07 (Hajič et al., 2004) Basque3LB/CoNLL07 (Aduriz et al., 2003) BTB/CoNLL06 (Simov et al., 2002) CESS-ECE/CoNLL07 (Martí et al., 2007) Penn ChineseTreebank 6.0 (Palmer et al., 2007) Sinica/CoNLL07 (Chen et al., 2003) PDT/CoNLL07 (Böhmová et al., 2003) DDT/CoNLL06 (Kromann et al., 2003) Alpino/CoNLL06 (Van der Beek et al., 2002) PennTreebank (Marcus et al., 1993) FrenchTreebank (Abeillé et al., 2003) Tiger/CoNLL06 (Brants et al., 2003) Tiger/CoNLL06 (Brants et al., 2002) Negra (Skut et al., 1997) GDT/CoNLL07 (Prokopidis et al., 2005) Szeged/CoNLL07 (Csendes et al., 2005) ISST/CoNLL07 (Montemagni et al., 2003) Verbmobil/CoNLL06 (Kawata and Bartels, 2000) Kyoto4.0 (Kurohashi and Nagao, 1997) Sejong (http://www.sejong.or.kr) Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002) SynTagRus-RNC (Boguslavsky et al., 2005) Ancora-Cast3LB/CoNLL06 (Nivre et al., 2006) Ancora-Cast3LB/CoNLL06 (Nivre et al., 2003)	Source # Tags PADT/CoNLL07 (Hajič et al., 2004) 21 Basque3LB/CoNLL07 (Aduriz et al., 2003) 64 BTB/CoNLL06 (Simov et al., 2002) 54 CESS-ECE/CoNLL07 (Martí et al., 2007) 54 Penn ChineseTreebank 6.0 (Palmer et al., 2007) 54 Sinica/CoNLL07 (Chen et al., 2003) 294 PDT/CoNLL07 (Böhmová et al., 2003) 25 Alpino/CoNLL06 (Kromann et al., 2003) 25 Alpino/CoNLL06 (Van der Beek et al., 2002) 12 Penn Treebank (Marcus et al., 1993) 45 FrenchTreebank (Abeillé et al., 2003) 30 Tiger/CoNLL06 (Brants et al., 2002) 54 Negra (Skut et al., 1997) 54 GDT/CoNLL07 (Prokopidis et al., 2005) 38 Szeged/CoNLL07 (Csendes et al., 2005) 38 Szeged/CoNLL07 (Montemagni et al., 2003) 28 Verbmobil/CoNLL06 (Kawata and Bartels, 2000) 80 Kyoto4.0 (Kurohashi and Nagao, 1997) 42 Sejong (http://www.sejong.or.kr) 187 Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002) 20 SynTagRus-RNC (Boguslavsky et al., 2006) 20 <

HMM Inference and Learning

- Learning
 - Maximum likelihood: transitions q and emissions e

n

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Inference
 - Viterbi

$$y^* = \arg \max_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

- Forward backward

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

What about n-gram Taggers?

- States encode what is relevant about the past
- Transitions $P(s_i | s_{i-1})$ encode well-formed tag sequences
 - In a bigram tagger, states = tags

In a trigram tagger, states = tag pairs

The State Lattice / Trellis \wedge, \wedge \land, \land \land, \land \land, \land Not all edges are N,N N,N N,N N,N allowed e(Fed|N) ^,N ^,∖ ^,V N,V 90/7,1 e(raises|D) N,D N,E N,D N,D 912 e(interest|V) D,∖ D,V D,V \$ \$ \$ \$ **START** Fed raises interest . . . Λ Ν D V . . .

Tagsets in Different Languages

Language	Source	# Tags	
Arabic	PADT/CoNLL07 (Hajič et al., 2004)	21	
Basque	Basque3LB/CoNLL07 (Aduriz et al., 2003)	64	
Bulgarian	BTB/CoNLL06 (Simov et al., 2002)	54	
Catalan	CESS-ECE/CoNLL07 (Martí et al., 2007)	54	
Chinese	Penn ChineseTreebank 6.0 (Palmer et al., 2007)	24	$294^2 = 86436$
Chinese	Sinica/CoNLL07 (Chen et al., 2003)	294	
Czech	PDT/CoNLL07 (Böhmová et al., 2003)	63	$294^4 = 7471182096$
Danish	DDT/CoNLL06 (Kromann et al., 2003)	25	
Dutch	Alpino/CoNLL06 (Van der Beek et al., 2002)	10	
English	PennTreebank (Marcus et al., 1993)	45	$45^2 = 2045$
French	FrenchTreebank (Abeillé et al., 2003)	30	_
German	Tiger/CoNLL06 (Brants et al., 2002)	54	$45^4 = 4100625$
German	Negra (Skut et al., 1997)	54	
Greek	GDT/CoNLL07 (Prokopidis et al., 2005)	38	
Hungarian	Szeged/CoNLL07 (Csendes et al., 2005)	43	
Italian	ISST/CoNLL07 (Montemagni et al., 2003)	28	
Japanese	Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80	
Japanese	Kyoto4.0 (Kurohashi and Nagao, 1997)	42	
Korean	Sejong (http://www.sejong.or.kr)	187	
Portuguese	Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22	
Russian	SynTagRus-RNC (Boguslavsky et al., 2002)	11	$11^2 = 121$
Slovene	SDT/CoNLL06 (Džeroski et al., 2006)	20	114 - 17671
Spanish	Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47	[·] = 404
Swedish	Talbanken05/CoNLL06 (Nivre et al., 2006)	41	
Turkish	METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31	[Petrov et al. 2012]

Some Numbers

Most errors on unknown words

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions

– Upper bound:

Re-visit P(x | y)

- Reality check:
 - What if we drop the sequence?
 - Re-visit P(x | y)?
 - Most frequent tag:
 - 90.3% with a so-so unknown word model
 - Can we do better?

What about better features?

- Looking at a word and its environment
 - Add in previous / next word the ____
 - Previous / next word shapes X _ X
 - Occurrence pattern features [X: x X occurs]
 - Crude entity detection _____ (Inc.|Co.)
 - Phrasal verb in sentence? put
 - Conjunctions of these things
- Uses lots of features: > 200K

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)

~90% / ~50% ~95% / ~55% 96.7% / 85.5%

- What does this tell us about sequence models?
- How do we add more features to our sequence models?
 - Upper bound: ~98%

MEMM Taggers

One step up: also condition on previous tags: n

$$p(y_1 \dots y_n | x_1 \dots x_n) = \prod_{\substack{i=1 \\ n}} p(y_i | y_1 \dots y_{i-1}, x_1 \dots x_n)$$
$$= \prod_{\substack{i=1 \\ i=1}} p(y_i | y_{i-1}, x_1 \dots x_n)$$

• Training:

- Train $p(y_i|y_{i-1}, x_1 \dots x_n)$ as a discrete log-linear (MaxEnt) model

• Scoring:

$$p(y_i|y_{i-1}, x_1 \dots x_n) = \frac{e^{w \cdot \phi(x_1 \dots x_n, i, y_{i-1}, y_i)}}{\sum_{y'} e^{w \cdot \phi(x_1 \dots x_n, i, y_{i-1}, y')}}$$

• This is referred to as an MEMM tagger [Ratnaparkhi 96]

HMM vs. MEMM

• HMM models joint distribution:

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

• MEMM models conditioned distribution:

$$p(y_1 \dots y_n | x_1 \dots x_n) = \prod_{i=1}^n p(y_i | y_1 \dots y_{i-1}, x_1 \dots x_n)$$

Decoding MEMM Taggers

• Scoring:

$$p(y_i|y_{i-1}, x_1 \dots x_n) = \frac{e^{w \cdot \phi(x_1 \dots x_n, i, y_{i-1}, y_i)}}{\sum_{y'} e^{w \cdot \phi(x_1 \dots x_n, i, y_{i-1}, y')}}$$

- Beam search is effective why?
- Guarantees? Optimal?
- Can we do better?

The MEMM State Lattice / Trellis \land \land \wedge Λ N N N N MIN. 91JN J J (J) J J J D $\left(\mathsf{D}\right)$ D D D D \$ \$ \$ \$ \$ \$ **START** Fed raises interest rates STOP V Λ Ν V V J

Decoding MEMM Taggers

- Decoding MaxEnt taggers:
 - Just like decoding HMMs
 - Viterbi, beam search
- Viterbi algorithm (HMMs):
 - Define $\pi(i, y_i)$ to be the max score of a sequence of length *i* ending in tag y_i

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

- Viterbi algorithm (MaxEnt):
 - Can use same algorithm for MEMMs, just need to redefine $\pi(i, y_i)$!

$$\pi(i, y_i) = \max_{y_{i-1}} p(y_i | y_{i-1}, x_1 \dots x_m) \pi(i-1, y_{i-1})$$

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)
 - MEMM tagger 1:

~90% / ~50% ~95% / ~55% 96.7% / 85.5% 93.7% / 82.6%

~98%

Feature Development

Common errors:

		JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total	
	JJ	0	177	56	0	61	2	5	10	15	108	0	488	
	NN	244	0	103	0	12	1	1	29	5	6	19	525	
	NNP	107	106	0	132	5	0	7	5	1	2	0	427	
	NNPS	1	0	110	0	0	0	0	0	0	0	0	142	
	RB	72	21	7	0	0	16	138	1	0	0	0	295	
	RP	0	0	0	0	39	0	65	0	0	0	0	104	
	IN	11	0	1	0	(169)	103	0	1	0	0	0	323	
	VB	17	64	9	0	2	0	1	0	4	7	85	189	
	VBD	10	5	3	0	0	0	0	3	0	143	2	166	
	VBN	101	3	3	0	0	0	0	3	108	Q	1	221	
	VBP	5	34	3	1	1	0	2	49	6	3	0	104	
	Total	626	536	348	144	317	122	279	102	140	269	108	3651	
N٢	1/JJ	NN			VBD	RP/II	N DT	NN			RB	VBD/	/BN N	NS
offi	cial kn	owlec	lge		mad	e up	the	stor	У	r	ecentl	y sol	ld sh	ares

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)
 - MEMM tagger 1:
 - MEMM tagger 2:

~90% / ~50% ~95% / ~55% 96.7% / 85.5% 93.7% / 82.6% 96.7% / 84.5%

– Upper bound:

Locally Normalized Models

- So far:
 - Probabilities are product of **locally normalized** probabilities
 - Is this bad?

from \ to	А	В	С	
А	0.4	0.2	0.4	
В	0.0	1.0	0.0	
С	0.6	0.2	0.2	

 $B \rightarrow B$ transitions are likely to take over even if rarely observed!

Locally Normalized Models

- So far:
 - Probabilities are product of **locally normalized** probabilities
 - Is this bad?
- Label bias
 - MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn't flow properly

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also Perceptrons)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the data, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online structured) perceptron algorithm:
 - Start with zero weights
 - Visit training instances (x_i,y_i) one by one
 - Make a prediction

$$y^* = \arg \max_{u} w \cdot \phi(x_i, y)$$

- If correct (y*==y_i):
 no change, goto next example!
- If wrong:
 - adjust weights: $w = w + \phi(x_i, y_i) \phi(x_i, y^*)$

Sentence: $x = x_1 \dots x_n$

 $y = y_1 \dots y_m$

Tag Sequence:

• Challenge: How to compute argmax efficiently?

Decoding

• Linear Perceptron $y^* = \arg \max_{u} w \cdot \phi(x, y) \cdot \theta$

- Features must be local, for $x = x_1 \dots x_n$, and $y = y_1 \dots y_m$

$$\phi(x, y) = \sum_{j=1}^{n} \phi(x, j, y_{j-1}, y_j)$$

The MEMM State Lattice / Trellis \land \land \wedge Λ N N N N MIN. 91JN J J (J) J J J D $\left(\mathsf{D}\right)$ D D D D \$ \$ \$ \$ \$ \$ **START** Fed raises interest rates STOP V Λ Ν V V J

The Perceptron State Lattice / Trellis

Decoding

- Linear Perceptron $y^* = \arg \max_{u} w \cdot \phi(x, y) \cdot \theta$
 - Features must be local, for $x=x_1...x_m$, and $s=s_1...s_m$

$$\phi(x,y) = \sum_{j=1}^{n} \phi(x,j,y_{j-1},y_j)$$

- Define $\pi(i, y_i)$ to be the max score of a sequence of length *i* ending in tag y_i

$$\pi(i, y_i) = \max_{y_{i-1}} w \cdot \phi(x, i, y_{i-i}, y_i) + \pi(i - 1, y_{i-1})$$

- Viterbi algorithm (HMMs): $\pi(i, s_i) = \max_{s_{i-1}} e(x_i | s_i) q(s_i | s_{i-1}) \pi(i - 1, s_{i-1})$
- Viterbi algorithm (Maxent): $\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i-1, s_{i-1})$

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)
 - MEMM tagger 1:
 - MEMM tagger 2:
 - Perceptron:

~90% / ~50% ~95% / ~55% 96.7% / 85.5% 93.7% / 82.6% 96.7% / 84.5%

– Upper bound:

~98%

Conditional Random Fields (CRFs)

- What did we lose with the Perceptron?
 - No probabilities
 - Let's try again with a probabilistic model

CRFs

• Maximum entropy (logistic regression)

p(y|x;w) =

Tag Sequence: $y = y_1 \dots y_n$

Sentence: $x = x_1 \dots x_n$

– Learning: maximize the (log) conditional likelihood of training data $\{(x^{(i)},y^{(i)})\}_{i=1}^m$

$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^m \left(\phi_j(x^{(i)}, y^{(i)}) - \sum_y p(y|x_i; w) \phi_j(x^{(i)}, y) \right) - \lambda w_j$$

- Computational challenges?

• Most likely tag sequence, normalization constant, gradient

$\begin{array}{l} \mbox{Decoding} \\ y^* = \arg\max_y p(y|x;w) \\ \mbox{CRFs} \end{array}$

- Features must be local, for $x = x_1 \dots x_n$, and $y = y_1 \dots y_n$

$$p(y|x;w) = \frac{\exp(w \cdot \Phi(x,y))}{\sum_{y'} \exp(w \cdot \Phi(x,y'))} \quad \phi(x,y) = \sum_{j=1}^{n} \phi(x,j,y_{j-1},y_j)$$

$$\arg\max_{y} \frac{\exp(w \cdot \Phi(x,y))}{\sum_{y'} \exp(w \cdot \Phi(x,y'))} = \arg\max_{y} \exp(w \cdot \Phi(x,y))$$

$$= \arg\max_{y} w \cdot \Phi(x,y)$$

Same as linear Perceptron!

ullet

$$\pi(i, y_i) = \max_{y_{i-1}} \phi(x, i, y_{i-i}, y_i) + \pi(i - 1, y_{i-1})$$

CRFs: Computing Normalization

$$p(y|x;w) = \frac{\exp(w \cdot \Phi(x,y))}{\sum_{y'} \exp(w \cdot \Phi(x,y'))} \qquad \phi(x,y) = \sum_{j=1}^{n} \phi(x,j,y_{j-1},y_j)$$
$$\sum_{y'} \exp(w \cdot \Phi(x,y')) = \sum_{y'} \exp\left(\sum_{j} w \cdot \phi(x,j,y_{j-1},y_j)\right)$$
$$= \sum_{y'} \prod_{j} \exp(w \cdot \phi(x,j,y_{j-1},y_j))$$

Define $norm(i, y_i)$ to sum of scores for sequences ending in position *i*

$$norm(i, y_i) = \sum_{y_{i-1}} \exp(w \cdot \phi(x, i, y_{i-1}, y_i)) norm(i-1, y_{i-1})$$

• Forward algorithm! Remember HMM case:

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

CRFs: Computing Gradient

$$p(y|x;w) = \frac{\exp(w \cdot \Phi(x,y))}{\sum_{y'} \exp(w \cdot \Phi(x,y'))} \qquad \phi(x,y) = \sum_{j=1}^{n} \phi(x,j,y_{j-1},y_j)$$
$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^{m} \left(\phi_j(x^{(i)},y^{(i)}) - \sum_y p(y|x_i;w)\phi_j(x^{(i)},y) \right) - \lambda w_j$$

$$\sum_{y} p(y|x_i; w) \Phi_j(x_i, y) = \sum_{y} p(y|x_i; w) \sum_{k=1}^n \phi_j(x_i, k, y_{k-1}, y_k)$$
$$= \sum_{k=1}^n \sum_{a, b} \sum_{y: y_{k-1} = a, y_k = b} p(y|x_i; w) \phi_j(x_i, k, y_{k-1}, y_k)$$

n

Can compute with the Forward Backward algorithm
 See notes for full details!

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)
 - MEMM tagger 1:
 - MEMM tagger 2:
 - Perceptron:
 - CRF++:
 - Upper bound:

~90% / ~50% ~95% / ~55% 96.7% / 85.5% 93.7% / 82.6% 96.7% / 84.5% 96.8% / 86.9%

~98%

Cyclic Network Cyclic Tag

- Train two MEMMs, combine scores
- And be very careful
 - Tune regularization
 - Try lots of different features
 - See paper for full details

Some Numbers

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (Brants, 2000):
 - MaxEnt P(y | x)
 - MEMM tagger 1:
 - MEMM tagger 2:
 - Perceptron:
 - CRF++:
 - Cyclic tagger:
 - Upper bound:

~90% / ~50% ~95% / ~55% 96.7% / 85.5% 93.7% / 82.6% 96.7% / 84.5% 96.8% / 86.9% 97.1%

~98%

Summary

- For tagging, the change from generative to discriminative model does not by itself result in great improvement
- One profits from models for specifying dependence on **overlapping features** of the observation such as spelling, suffix analysis, etc.
- MEMMs allow integration of rich features of the observations
- This additional power (of the MEMM ,CRF, Perceptron models) has been shown to result in improvements in accuracy
- The higher accuracy of discriminative models comes at the price of **much slower training**

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)