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Overview
• Introduction to Neural Networks
• Word representations
• NN Optimization tricks



Some History
• Neural network algorithms date from the 80’s
– Originally inspired by early neuroscience

• Historically slow, complex, and unwieldy
• Now: term is abstract enough to encompass 

almost any model – but useful!
• Dramatic shift in last 2-3 years away from 

MaxEnt (linear, convex) to “neural net” (non-
linear architecture)



The “Promise”
• Most ML works well because of 

human-designed 
representations and input 
features

• ML becomes just optimizing 
weights

• Representation learning
attempts to automatically learn 
good features and 
representations

• Deep learning attempts to 
learn multiple levels of 
representation of increasing 
complexity/abstraction

Named Entity Recognition

WordNet

Semantic Role Labeling



Neuron
• Neural networks comes with their 

terminological baggage

• Parameters: 
– Weights: wi and b
– Activation function

• If we drop the activation function, reminds 
you of something?



Biological “Inspiration”



Neural Network



Neural Network
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Neuron and Other Models
• A single neuron is a perceptron
• Strong connection to MaxEnt – how? 



From MaxEnt to Neural Nets
• Vector form MaxEnt:

• For two classes:
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From MaxEnt to Neural Nets
• Vector form MaxEnt:

• For two classes:

• Neuron:
– Add an “always on” feature for class prior à bias 

term (b)
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From MaxEnt to Neural Nets
• Vector form MaxEnt:

• Neuron:

• Neuron parameters: w, b
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Neural Net = Several MaxEnt
Models

• Feed a number of 
MaxEnt models à
vector of outputs

• And repeat …



Neural Net = Several MaxEnt
Models

• But: how do we tell the hidden layer what to do?
– Learning will figure it out



How to Train?
• No hidden layer:
– Supervised
– Just like MaxEnt

• With hidden layers:
– Latent units à not convex
–What do we do?
• Back-propagate the gradient
• About the same, but no guarantees



Probabilistic Output from Neural 
Nets

• What if we want the 
output to be a 
probability distribution 
over possible outputs?

• Normalize the output 
activations using 
softmax:

– Where 𝑞 is the output 
layer

y = softmax(W · z + b)
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Word Representations
• So far, atomic symbols:
– “hotel”, “conference”, “walking”, “___ing”

• But neural networks take vector input
• How can we bridge the gap?
• One-hot vectors

– Dimensionality:
• Size of vocabulary
• 20K for speech
• 500K for broad-coverage domains
• 13M for Google corpora

hotel =           [0 0 0 0 … 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
conference = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]



Word Representations
• One-hot vectors:

– Problems?
– Information sharing? 
• “hotel” vs. “hotels”

hotel =           [0 0 0 0 … 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
conference = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
hotels         = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]



Word Embeddings
• Each word is represented using a dense 

low-dimensional vector
– Low-dimensional << vocabulary size

• If trained well, similar words will have 
similar vectors

• How to train? What objective to maximize? 
– Soon …



Word Embeddings as Features
• Example: sentiment classification 
– very positive, positive, neutral, negative, very 

negative
• Feature-based models: bag of words
• Any good neural net architecture?
– Concatenate all the vectors
• Problem: different document à different length

– Instead: sum, average, etc.



Neural Bag-of-words

[Iyyer et al. 2015; Wang and Manning 2012]

Deep 
Averaging 
Networks

BOW + fancy 
smoothing + SVM

88.23

NBOW + DAN 89.4

IMDB sentiment analysis



Practical Tips
• Select network structure appropriate for the 

problem
– Window vs. recurrent vs. recursive
– Non-linearity function

• Gradient checks to identify bugs
• Parameter initialization
• Model is powerful enough?
– If not, make it larger 
– Yes, so regularize, otherwise it will overfit

• Know your non-linearity function and its gradient



Avoiding Overfitting
• Reduce model size (but not too much)
• L1 and L2 regularization
• Early stopping (e.g., patience)
• Dropout (Hinton et al. 2012)
– Randomly set 50% of inputs in each layer to 0


