
Neural Networks

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview
• Introduction to Neural Networks
• Word representations
• NN Optimization tricks

Some History
• Neural network algorithms date from the 80’s
– Originally inspired by early neuroscience

• Historically slow, complex, and unwieldy
• Now: term is abstract enough to encompass

almost any model – but useful!
• Dramatic shift in last 2-3 years away from

MaxEnt (linear, convex) to “neural net” (non-
linear architecture)

The “Promise”
• Most ML works well because of

human-designed
representations and input
features

• ML becomes just optimizing
weights

• Representation learning
attempts to automatically learn
good features and
representations

• Deep learning attempts to
learn multiple levels of
representation of increasing
complexity/abstraction

Named Entity Recognition

WordNet

Semantic Role Labeling

Neuron
• Neural networks comes with their

terminological baggage

• Parameters:
– Weights: wi and b
– Activation function

• If we drop the activation function, reminds
you of something?

Biological “Inspiration”

Neural Network

Neural Network

Matrix Notation
W00(W0a+ b0) + b00

a1

a2

W0 W0

h1 = W0
11a1 +W0

12a2 + b0
1

h2 = W0
21a1 +W0

22a2 + b0
2

o2 = W

00
21h1 +W

00
22h2 + b

00
2

o1 = W

00
11h1 +W

00
12h2 + b

00
1

Neuron and Other Models
• A single neuron is a perceptron
• Strong connection to MaxEnt – how?

From MaxEnt to Neural Nets
• Vector form MaxEnt:

• For two classes:

P (y1|x;w) =
e

w

>
�(x,y1)

e

w

>
�(x,y1) + e

w

>
�(x,y2)

=
e

w

>
�(x,y1)

e

w

>
�(x,y1) + e

w

>
�(x,y2)

e

�w

>
�(x,y1)

e

�w

>
�(x,y1)

=
1

1 + e

w

>(�(x,y2)��(x,y2))

=
1

1 + e

�w

>
z

= f(w>
z)

P (y|x;w) = e

w

>
�(x,y)

P
y

0 e
w

>
�(x,y0)

Logisitc
Function
(sigmoid)

z = �(x, y1)� �(x, y2)

From MaxEnt to Neural Nets
• Vector form MaxEnt:

• For two classes:

• Neuron:
– Add an “always on” feature for class prior à bias

term (b)

P (y|x;w) = e

w

>
�(x,y)

P
y

0 e
w

>
�(x,y0)

P (y1|x;w) =
1

1 + e

�w>z
= f(w>

z)

hw,b(z) = f(w>z + b)

f(u) =
1

1 + e�u

From MaxEnt to Neural Nets
• Vector form MaxEnt:

• Neuron:

• Neuron parameters: w, b

P (y|x;w) = e

w

>
�(x,y)

P
y

0 e
w

>
�(x,y0)

hw,b(z) = f(w>z + b)

f(u) =
1

1 + e�u

Neural Net = Several MaxEnt
Models

• Feed a number of
MaxEnt models à
vector of outputs

• And repeat …

Neural Net = Several MaxEnt
Models

• But: how do we tell the hidden layer what to do?
– Learning will figure it out

How to Train?
• No hidden layer:
– Supervised
– Just like MaxEnt

• With hidden layers:
– Latent units à not convex
–What do we do?
• Back-propagate the gradient
• About the same, but no guarantees

Probabilistic Output from Neural
Nets

• What if we want the
output to be a
probability distribution
over possible outputs?

• Normalize the output
activations using
softmax:

– Where 𝑞 is the output
layer

y = softmax(W · z + b)

softmax(q) =

e

q

Pk
j=1 e

qj

Word Representations
• So far, atomic symbols:
– “hotel”, “conference”, “walking”, “___ing”

• But neural networks take vector input
• How can we bridge the gap?
• One-hot vectors

– Dimensionality:
• Size of vocabulary
• 20K for speech
• 500K for broad-coverage domains
• 13M for Google corpora

hotel = [0 0 0 0 … 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
conference = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

Word Representations
• One-hot vectors:

– Problems?
– Information sharing?
• “hotel” vs. “hotels”

hotel = [0 0 0 0 … 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
conference = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
hotels = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

Word Embeddings
• Each word is represented using a dense

low-dimensional vector
– Low-dimensional << vocabulary size

• If trained well, similar words will have
similar vectors

• How to train? What objective to maximize?
– Soon …

Word Embeddings as Features
• Example: sentiment classification
– very positive, positive, neutral, negative, very

negative
• Feature-based models: bag of words
• Any good neural net architecture?
– Concatenate all the vectors
• Problem: different document à different length

– Instead: sum, average, etc.

Neural Bag-of-words

[Iyyer et al. 2015; Wang and Manning 2012]

Deep
Averaging
Networks

BOW + fancy
smoothing + SVM

88.23

NBOW + DAN 89.4

IMDB sentiment analysis

Practical Tips
• Select network structure appropriate for the

problem
– Window vs. recurrent vs. recursive
– Non-linearity function

• Gradient checks to identify bugs
• Parameter initialization
• Model is powerful enough?
– If not, make it larger
– Yes, so regularize, otherwise it will overfit

• Know your non-linearity function and its gradient

Avoiding Overfitting
• Reduce model size (but not too much)
• L1 and L2 regularization
• Early stopping (e.g., patience)
• Dropout (Hinton et al. 2012)
– Randomly set 50% of inputs in each layer to 0

