CS5740: Natural Language Processing Spring 2017

Neural Networks

Instructor: Yoav Artzi

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview

- Introduction to Neural Networks
- Word representations
- NN Optimization tricks

Some History

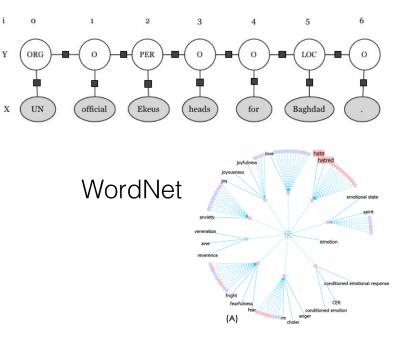
- Neural network algorithms date from the 80's

 Originally inspired by early neuroscience
- Historically slow, complex, and unwieldy
- Now: term is abstract enough to encompass almost any model but useful!
- Dramatic shift in last 2-3 years away from MaxEnt (linear, convex) to "neural net" (nonlinear architecture)

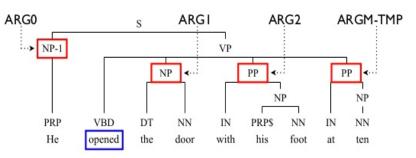
The "Promise"

- Most ML works well because of human-designed representations and input features
- ML becomes just optimizing weights
- Representation learning attempts to automatically learn good features and representations
- **Deep learning** attempts to learn multiple levels of representation of increasing complexity/abstraction

Named Entity Recognition

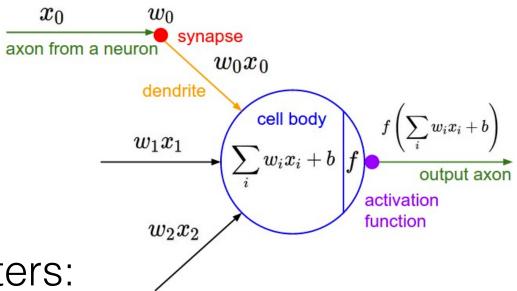


Semantic Role Labeling



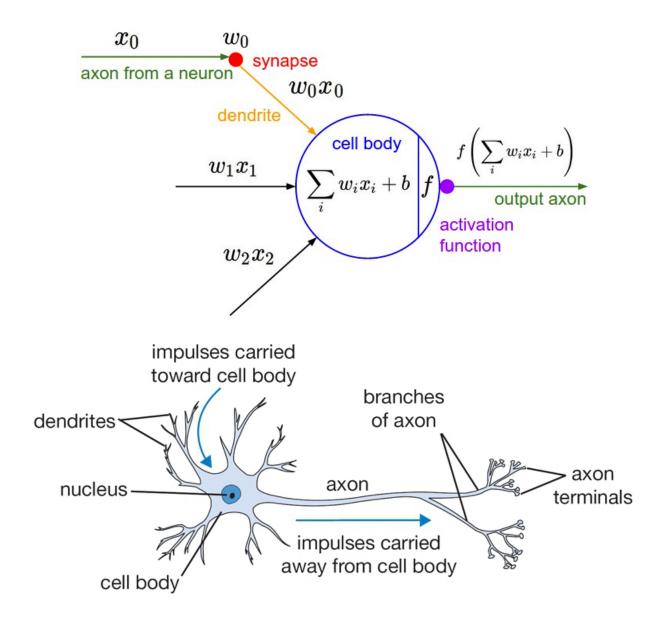
Neuron

Neural networks comes with their terminological baggage

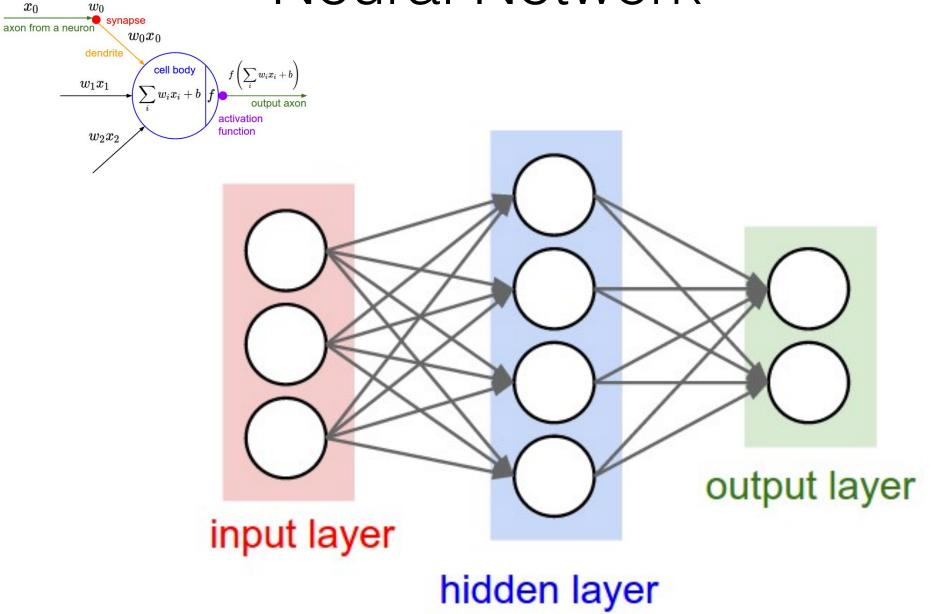


- Parameters:
 - Weights: w_i and b
 Activation function
- If we drop the activation function, reminds you of something?

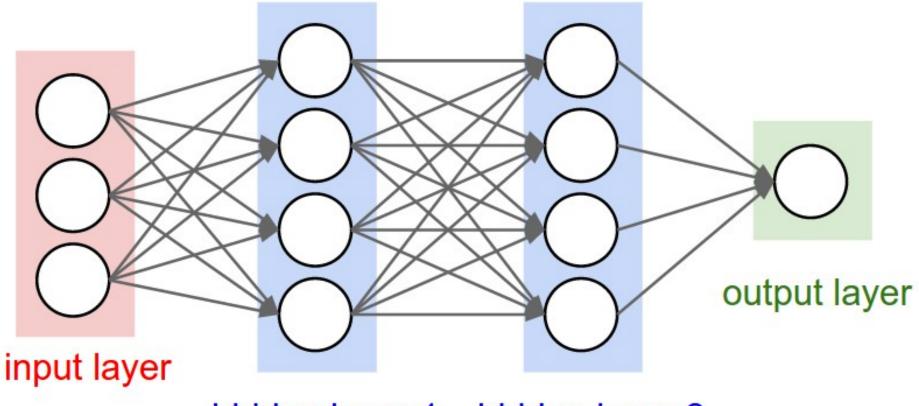
Biological "Inspiration"



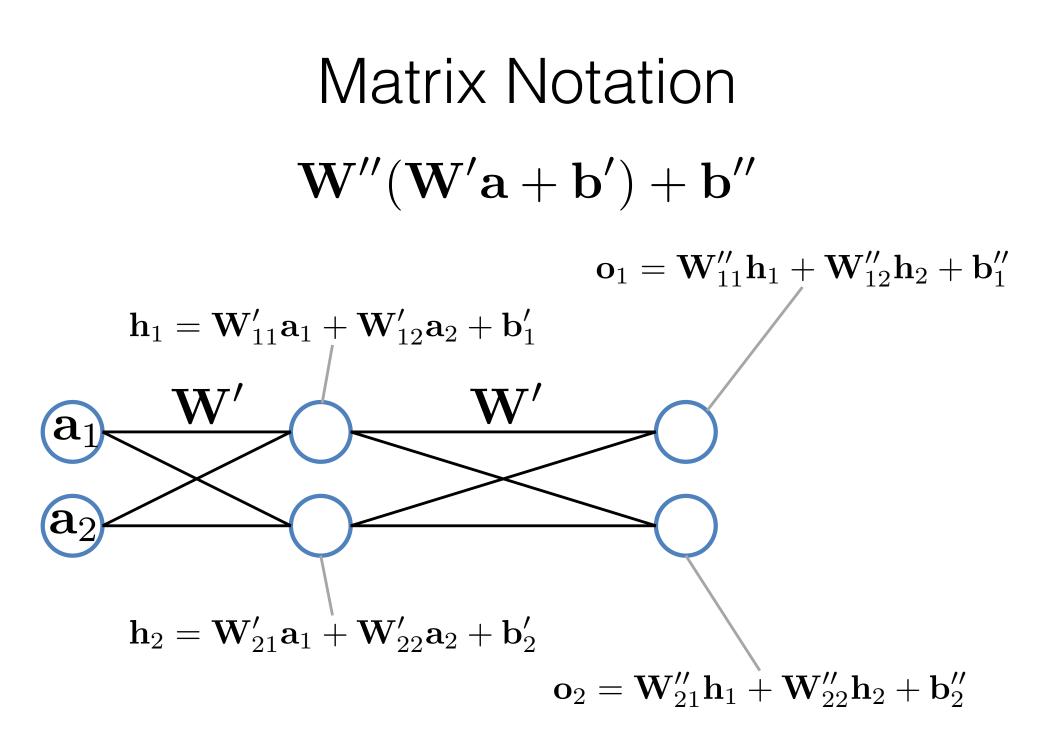
Neural Network



Neural Network



hidden layer 1 hidden layer 2



Neuron and Other Models

- A single neuron is a perceptron
- Strong connection to MaxEnt how?

From MaxEnt to Neural Nets

• Vector form MaxEnt:

$$P(y|x;w) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{y'} e^{w^{\top}\phi(x,y')}}$$

• For two classes:

$$P(y_{1}|x;w) = \frac{e^{w^{\top}\phi(x,y_{1})}}{e^{w^{\top}\phi(x,y_{1})} + e^{w^{\top}\phi(x,y_{2})}}$$

$$= \frac{e^{w^{\top}\phi(x,y_{1})}}{e^{w^{\top}\phi(x,y_{1})} + e^{w^{\top}\phi(x,y_{2})}} \frac{e^{-w^{\top}\phi(x,y_{1})}}{e^{-w^{\top}\phi(x,y_{1})}}$$

$$= \frac{1}{1 + e^{w^{\top}(\phi(x,y_{2}) - \phi(x,y_{2}))}}$$

$$= \frac{1}{1 + e^{-w^{\top}z}} = f(w^{\top}z)$$

$$z = \phi(x,y_{1}) - \phi(x,y_{2})$$

From MaxEnt to Neural Nets

- Vector form MaxEnt:
- For two classes:

$$P(y_1|x;w) = \frac{1}{1 + e^{-w^{\top}z}} = f(w^{\top}z)$$

 $P(y|x;w) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{n'} e^{w^{\top}\phi(x,y')}}$

- Neuron:
 - Add an "always on" feature for class prior → bias term (b)

$$h_{w,b}(z) = f(w^{\top}z + b)$$
$$f(u) = \frac{1}{1 + e^{-u}}$$

From MaxEnt to Neural Nets

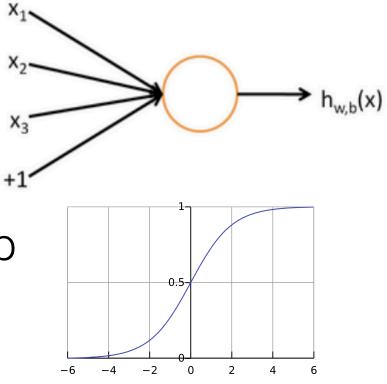
• Vector form MaxEnt:

$$P(y|x;w) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{y'} e^{w^{\top}\phi(x,y')}}$$

• Neuron:

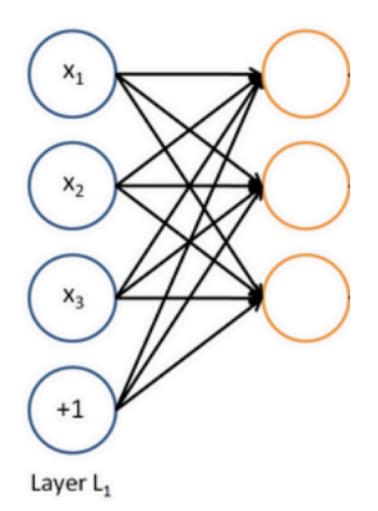
$$h_{w,b}(z) = f(w^{\top}z + b)$$
$$f(u) = \frac{1}{1 + e^{-u}}$$

• Neuron parameters: w, b

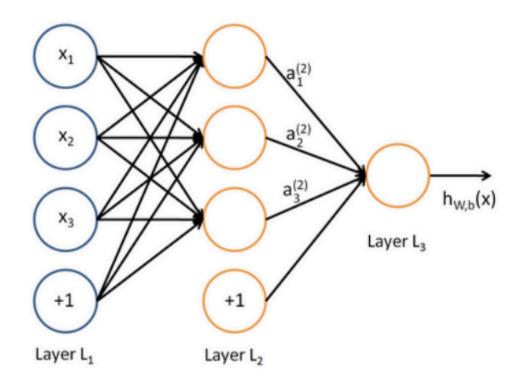


Neural Net = Several MaxEnt Models

- Feed a number of MaxEnt models → vector of outputs
- And repeat ...



Neural Net = Several MaxEnt Models



But: how do we tell the hidden layer what to do?
 Learning will figure it out

How to Train?

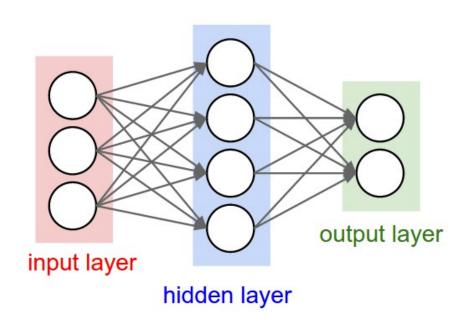
- No hidden layer:
 - Supervised
 - Just like MaxEnt
- With hidden layers:
 - Latent units \rightarrow not convex
 - What do we do?
 - Back-propagate the gradient
 - About the same, but no guarantees

Probabilistic Output from Neural Nets

- What if we want the output to be a probability distribution over possible outputs?
- Normalize the output activations using softmax:

$$y = \text{softmax}(W \cdot z + b)$$
$$\text{softmax}(q) = \frac{e^{q}}{\sum_{j=1}^{k} e^{q_{j}}}$$

Where q is the output layer



Word Representations

- So far, atomic symbols:
 - "hotel", "conference", "walking", "___ing"
- But neural networks take vector input
- How can we bridge the gap?
- One-hot vectors

- Dimensionality:
 - Size of vocabulary
 - 20K for speech
 - 500K for broad-coverage domains
 - 13M for Google corpora

Word Representations

• One-hot vectors:

- Problems?
- Information sharing?
 - "hotel" vs. "hotels"

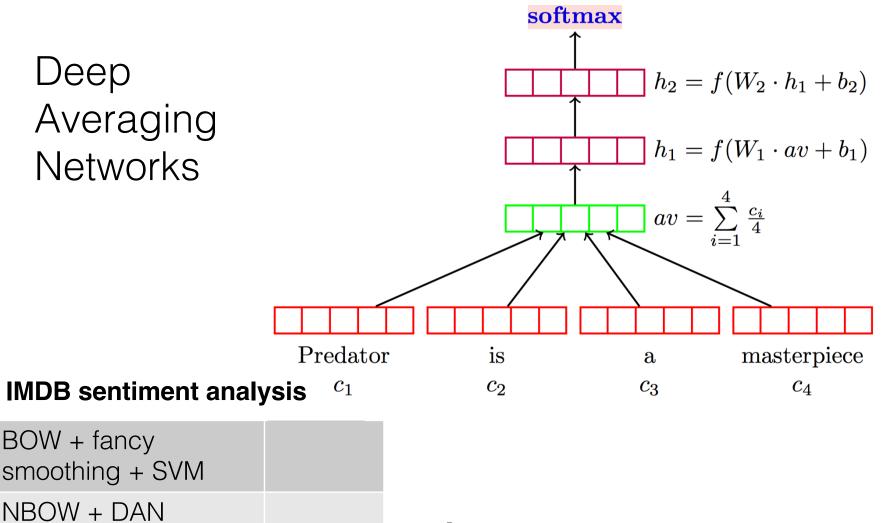
Word Embeddings

- Each word is represented using a dense low-dimensional vector
 - Low-dimensional << vocabulary size</p>
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
 Soon ...

Word Embeddings as Features

- Example: sentiment classification
 - very positive, positive, neutral, negative, very negative
- Feature-based models: bag of words
- Any good neural net architecture?
 Concatenate all the vectors
 - Problem: different document \rightarrow different length
 - Instead: sum, average, etc.

Neural Bag-of-words



[lyyer et al. 2015; Wang and Manning 2012]

Practical Tips

- Select network structure appropriate for the problem
 - Window vs. recurrent vs. recursive
 - Non-linearity function
- Gradient checks to identify bugs
- Parameter initialization
- Model is powerful enough?
 - If not, make it larger
 - Yes, so regularize, otherwise it will overfit
- Know your non-linearity function and its gradient

Avoiding Overfitting

- Reduce model size (but not too much)
- L1 and L2 regularization
- Early stopping (e.g., *patience*)
- Dropout (Hinton et al. 2012)
 - Randomly set 50% of inputs in each layer to 0