
Text Classification

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Overview
• Classification Problems

– Spam vs. Non-spam, Text Genre, Word
Sense, etc.

• Supervised Learning
– Naïve Bayes
– Log-linear models (Maximum Entropy

Models)
– Weighted linear models and the

Perceptron
– Neural networks

Supervised Learning: Data
• Learning from annotated data
• Often the biggest problem
• Why?

– Annotation requires specific expertise
– Annotation is expensive
– Data is private and not accessible
– Often difficult to define and be consistent

• Before fancy models – always think about
the data

Reality
Check

Held-out Data
• Important tool for estimating

generalization:
– Train on one set, and evaluate during

development on another
– Test data: only use once!

Training Data Development
Data

Held-out Test
Data

Classification
• Automatically make a decision about inputs

– Example: document à category
– Example: image of digit à digit
– Example: image of object à object type
– Example: query + webpage à best match
– Example: symptoms à diagnosis
– …

• Three main ideas:
– Represenation as feature vectors
– Scoring by linear functions
– Learning by optimizations

Probabilistic Classifiers
• Two broad approaches to predicting classes y*

• Joint / Generative (e.g., Naïve Bayes)
– Work with a joint probabilistic model of the data
– Assume functional form for P(X|Y), P(Y)
– Estimate probabilities from data (don’t forget to smooth)
– Use Bayes rules to calculate P(Y|X)

• E.g., represent p(y,x) as Naïve Bayes model, compute y*=argmaxy p(y,x)= argmaxy p(y)p(x|y)
– Advantages: learning weights is easy and well understood

• Conditional / Discriminative (e.g., Logistic Regression)
– Work with conditional probability p(y|x)
– We can then direct compute y* = argmaxy p(y|x)
– Estimate parameters from data (don’t forget to regularize)
– Advantages: Don’t have to model p(x)! Can develop feature rich models for p(y|x)

Text Categorization
• Want to classify documents into broad semantic topics

• Which one is the politics document? (And how much deep processing did
that decision take?)

• First approach: bag-of-words and Naïve-Bayes models
• More approaches later…
• Usually begin with a labeled corpus containing examples of each class

Obama is hoping to rally support
for his $825 billion stimulus
package on the eve of a crucial
House vote. Republicans have
expressed reservations about
the proposal, calling for more tax
cuts and less spending. GOP
representatives seemed doubtful
that any deals would be made.

California will open the 2009
season at home against
Maryland Sept. 5 and will play a
total of six games in Memorial
Stadium in the final football
schedule announced by the
Pacific-10 Conference Friday.
The original schedule called for
12 games over 12 weekends.

Example: Spam Filter
• Input: email
• Output: spam/ham
• Setup:

– Get a large collection of example
emails, each labeled “spam” or
“ham”

– Note: someone has to hand label
all this data!

– Want to learn to predict labels of
new, future emails

• Features: The attributes used to
make the ham / spam decision
– Words: FREE!
– Text Patterns: $dd, CAPS
– Non-text: SenderInContacts
– …

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power nothing
happened.

General Text Classification
• Input:

– Document 𝑋	of length |𝑋|	is a sequence of
tokens:

• Output:
– One of 𝑘 labels 𝑦	

X = hx1, . . . , x|X|i

Naïve-Bayes Models
• Generative model: pick a topic, then

generate a document
• Naïve-Bayes assumption:

– All words are independent given the topic.

y

x1 x2 xn. . .

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

Using NB for Classification
• We have a joint model of topics and documents

• To assign a label 𝑦∗ to a new document
〈𝑥), 𝑥+, … , 𝑥-〉:

Numerical/speed issues?

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

y

⇤
= argmax

y
p(y,X) = argmax

y
q(y)

|X|Y

i=1

q(xi | y)

Learning: Maximum Likelihood
Estimate (MLE)

• Parameters to estimate:
– 𝑞 𝑦 = 𝜃2 for each topic 𝑦	
– 𝑞 𝑥 𝑦 = 𝜃32 for each topic 𝑦	and word 𝑥

• Data:

• Objective:

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

{(X(j), y(j))}Nj=1

argmax

✓

NY

j=1

p(y

(j)
, X

(j)
) = argmax

✓

NY

j=1

q(y

(j)
)

|X(j)|Y

i=1

q(xi | y(j))

MLE

• How do we do learning? We count!

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

q(y) = ✓y =
C(y)

N
q(x | y) = ✓

xy

=
C(x, y)

C(y)

Sparsity issues?Learning complexity?

argmax

✓

NY

j=1

p(y

(j)
, X

(j)
) = argmax

✓

NY

j=1

q(y

(j)
)

|X(j)|Y

i=1

q(xi | y(j))

Word Sparsity

q(y) = ✓y =
C(y)

N
q(x | y) = ✓

xy

=
C(x, y)

C(y)

Using NB for Classification
• We have a joint model of topics and documents

• To assign a label 𝑦∗ to a new document 〈𝑥), 𝑥+, … , 𝑥-〉:

• We get 𝑞 𝑥4 𝑦 = 0 when 𝐶 𝑥4, 𝑦 = 0
• Solution: smoothing + accounting for unknowns

– More when we discuss language models

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

y

⇤
= argmax

y
p(y,X) = argmax

y
q(y)

|X|Y

i=1

q(xi | y)

Using NB for Classification
• We have a joint model of topics and documents

• To assign a label y* to a new document <x1 x2 … xn>:

• How do we do learning?
– We count!

• Smoothing? What about totally unknown words?
• Can work shockingly well for text categorization (especially in the wild)
• How can unigram models be so terrible for language modeling, but class-

conditional unigram models work for text categorization?
• Numerical / speed issues?

p(y, x1, x2…xn) = q(y) q(xi | y)
i
∏

y*= argmax
y
p(y, x1, x2…xn) = argmaxy q(y) q(xi | y)

i
∏

We have to
smooth these!

Example: Word-sense
Disambiguation

• Example:
– living plant vs. manufacturing plant

• How do we tell these senses apart?
– “context”

– It’s just text categorization! (at the word level)
– Each word sense represents a topic

The plant which had previously sustained the town’s economy
shut down after an extended labor strike. The plants at the

entrance, dry and wilted, the first victims of …

Case Study: Word Senses
• Words have multiple distinct meanings, or senses:

– Plant: living plant, manufacturing plant, …
– Title: name of a work, ownership document, form of address, material at the start of

a film, …
• Many levels of sense distinctions

– Homonymy: totally unrelated meanings
• river bank, money bank

– Polysemy: related meanings
• star in sky, star on TV

– Systematic polysemy: productive meaning extensions or metaphor
• metonymy such as organizations to their buildings

– Sense distinctions can be extremely subtle (or not)
• Granularity of senses needed depends a lot on the task
• Why is it important to model word senses?

– Translation, parsing, information retrieval?

Word Sense Disambiguation
• Example: living plant vs. manufacturing plant
• How do we tell these senses apart?

– “context”

– Maybe it’s just text categorization
– Each word sense represents a topic
– Run a Naïve-Bayes classifier?

• Bag-of-words classification works OK for noun senses
– 90% on classic, shockingly easy examples (line, interest, star)
– 80% on senseval-1 nouns
– 70% on senseval-1 verbs

The plant which had previously sustained the town’s economy
shut down after an extended labor strike. The plants at the

entrance, dry and wilted, the first victims of …

Verb WSD
• Why are verbs harder?

– Verbal senses less topical
– More sensitive to structure, argument choice

• Verb Example: “Serve”
– [function] The tree stump serves as a table
– [enable] The scandal served to increase his popularity
– [dish] We serve meals for the homeless
– [enlist] She served her country
– [jail] He served six years for embezzlement
– [tennis] It was Agassi's turn to serve
– [legal] He was served by the sheriff

Better Features
• There are smarter features:

– Argument selectional preference:
• serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

– Sub-categorization:
• [function] serve PP[as]
• [enable] serve VP[to]
• [tennis] serve <intransitive>
• [food] serve NP {PP[to]}

– Can be captured poorly (but robustly) with modified Naïve Bayes
approach

• Other constraints (Yarowsky 95)
– One-sense-per-discourse (only true for broad topical distinctions)
– One-sense-per-collocation (pretty reliable when it kicks in:

manufacturing plant, flowering plant)

Complex Features with NB
• Example:

• So we have a decision to make based on a set of cues:
– context:jail, context:county, context:feeding, …
– local-context:jail, local-context:meals
– subcat:NP, direct-object-head:meals

• Not clear how build a generative derivation for these:
– Choose topic, then decide on having a transitive usage, then

pick “meals” to be the object’s head, then generate other
words?

– How about the words that appear in multiple features?
– Hard to make this work (though maybe possible)
– No real reason to try

Washington County jail served 11,166 meals last
month - a figure that translates to feeding some
120 people three times daily for 31 days.

Where we are?
• So far: Naïve Bayes models for classification

– Generative models, estimating 𝑃(𝑋 ∣ 𝑦) and 𝑃(𝑦)
– Assumption: features are independent given the

label (often violated in practice)
– Easy to estimate (just count!)

• Next: Discriminative models
– Estimating 𝑃(𝑦 ∣ 𝑋) directly
– Very flexible feature handling
– Require numerical optimization methods

A Discriminative Approach
• View WSD as a discrimination task, directly estimate:

• Have to estimate multinomial (over senses) where there
are a huge number of things to condition on
– History is too complex to think about this as a smoothing / back-

off problem

• Many feature-based classification techniques out there
– Discriminative models extremely popular in the NLP

community!

P(sense | context:jail, context:county,
context:feeding, …
local-context:jail, local-context:meals
subcat:NP, direct-object-head:meals, ….)

Feature Representations

• Features are indicator functions
which count the occurrences of
certain patterns in the input

• Initially: we will have different
feature values for every pair of
input 𝑋 and class 𝑦

Washington County jail served
11,166 meals last month - a
figure that translates to feeding
some 120 people three times
daily for 31 days.

context:jail = 1
context:county = 1
context:feeding = 1
context:game = 0

…

local-context:jail = 1
local-context:meals = 1

…

object-head:meals = 1
object-head:ball = 0

Example: Text Classification
• Goal: classify document to categories

• Classically: based on words in the document
• But other information sources are potentially relevant:

– Document length
– Average word length
– Document’s source
– Document layout

… win the election …

… win the game …

… see a movie …
SPORTS

POLITICS

OTHER

Some Notation
INPUT

OUTPUT SPACE

OUTPUT

TRUE OUTPUT

FEATURE
VECTOR

… win the election ...

SPORTS, POLITICS, OTHER

SPORTS

POLITICS

[1 0 1 0 0 0 0 0 0 0 0 0]

Y
y

SPORTS+”win” POLITICS+”win”

X(j)

y(j)

�(X(j), y)

Block Feature Vectors
• Sometimes, we think of the input as having features, which

are multiplied by outputs to form the candidates

… win the election …

“win” “election”

�(X,SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]

�(X,POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

�(X,OTHER) = [0 0 0 0 0 0 0 0 1 0 1 0]

Non-block Feature Vectors
• Sometimes the features of candidates cannot be

decomposed in this regular way
• Example: a parse tree’s features may be the rules used for

sentence 𝑋

• Different candidates will often share features
• We’ll return to the non-block case later

S
NP VP

VN N

S
NP VP

N V N

S
NP VP

NP

N N

VP

V

NP

N

VP

V N

�(X,) = [1 0 1 0 1]

�(X,) = [1 1 0 1 0]

Linear Models: Scoring
• In a linear model, each feature gets a weight in w

• We compare 𝑦’s on the basis of their linear
scores:

w = [1 1 �1�2 1 �1 1 �2 �2 �1 �1 1]

�(X,SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]

�(X,POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

score(X,POLITICS;w) = 1⇥ 1 + 1⇥ 1 = 2
score(X, y;w) = w

> · �(X, y)

Linear Models: Prediction Rule
• The linear prediction rule:

• How do we get the weights?

w = [1 1 �1�2 1 �1 1 �2 �2 �1 �1 1]

prediction(X,w) = argmax
y2Y

w>�(X, y)

�(X, SPORTS) = [1 0 1 0 . . .] score(X, SPORTS,w) = 1⇥ 1 + (�1)⇥ 1 = 0

�(X,POLITICS) = [. . . 1 0 1 0 . . .] score(X,POLITICS,w) = 1⇥ 1 + 1⇥ 1 = 2

�(X,OTHER) = [. . . 1 0 1 0] score(X,OTHER,w) = (�2)⇥ 1 + (�1)⇥ 1 = �3

prediction(X,w) = POLITICS

How to Pick Weights?
• Goal: choose “best” vector 𝑤 given training data

– For now, we mean “best for classification”

• The ideal: the weights which have greatest test set
accuracy / F1 / whatever
– But, don’t have the test set
– Must compute weights from training set

• Maybe we want weights which give best training set
accuracy?
– Hard discontinuous optimization problem
– May not (does not) generalize to test set

• Easy to overfit

Naïve-Bayes as a Linear Model
• (Multinomial) Naïve-Bayes is a linear model:

x

i = d1, d2, d3, . . . , dn

y

x1 x2 xn. . .

�(X, y) = [. . . 0 . . . ,1, #v1, #v2, . . . ,#vn, . . .]

w = [. , logP (y), logP (v1|y), logP (v2|y), . . . , logP (vn|y), . . .]

score(X, y, w) = w>�(X, y)

= logP (y) +
X

k

#v
k

logP (v
k

|y)

= log(P (y)
Y

k

P (v
k

|y)#vk
)

= log(P (y)
Y

d2x

i

P (d|y))

= logP (X, y)

Maximum Entropy Models
(MaxEnt)

• Maximum entropy (logistic regression)
– Model: use the scores as probabilities:

– Learning: maximize the (log) conditional likelihood of training
data

– Prediction:

Make positive
Normalizep(y|X;w) = exp

(

w · �(X, y)
)P

y0 exp (w · �(X, y0)
)

{(X(i), y(i))}Ni=1

y⇤ = argmax

y
p(y | X;w)

L(w) = log

NY

i=1

p(y(i)|X(i)
;w) =

NX

i=1

log p(y(i)|X(i)
;w)

w⇤
= argmax

w
L(w)

Unconstrained Optimization

• Unfortunately, 𝑎𝑟𝑔𝑚𝑎𝑥𝑤	𝐿(𝑤) doesn’t have a close formed solution
• The MaxEnt objective is an unconstrained optimization problem

• Basic idea: move uphill from current guess
• Gradient ascent / descent follows the gradient incrementally
• At local optimum, derivative vector is zero
• Will converge if step sizes are small enough, but not efficient
• All we need is to be able to evaluate the function and its derivative

L(w) =
NX

i=1

logP (y(i) | X(i)
;w) w⇤

= argmax

w
L(w)

Unconstrained Optimization
• Once we have a function 𝑓, we can find a local optimum by

iteratively following the gradient

• For convex functions:
– A local optimum will be global
– Does this mean that all is good?

• Basic gradient ascent isn’t very efficient, but there are simple
enhancements which take into account previous gradients:
conjugate gradient, L-BFGs

• There are special-purpose optimization techniques for MaxEnt, like
iterative scaling, but they aren’t better

Derivative of the MaxEnt Objective

• Some necessities:

w · �(x, y) = w1 ⇥ �1(x, y) + w2 ⇥ �2(x, y) + · · ·+ wn ⇥ �n(x, y)

@

@x

e

u = e

u @

@x

u

@

@x

logau =

1

u loge a

@

@x

u

@

@x

logeu =

1

u loge e

@

@x

u =

1

u

@

@x

u

L(w) =
NX

i=1

log p(y(i) | X(i)
;w) p(y | X;w) =

ew·�(X,y)

P
y0 ew·�(X,y0)

Derivative of the MaxEnt Objective
L(w) =

NX

i=1

log p(y(i) | X(i)
;w) p(y | X;w) =

ew·�(X,y)

P
y0 ew·�(X,y0)

Derivative of the MaxEnt Objective

@

@wj
L(w) =

@

@wj

NX

i=1

logP (y(i)|X(i)
;w)

=

@

@wj

NX

i=1

log

ew·�(X(i),y(i))

P
y0 ew·�(X(i),y0)

=

@

@wj

NX

i=1

⇣
log ew·�(X(i),y(i)) � log

X

y0

ew·�(X(i),y0)
⌘

=

@

@wj

NX

i=1

⇣
w · �(X(i), y(i))� log

X

y0

ew·�(X(i),y0)
⌘

=

NX

i=1

⇣
�j(X

(i), y(i))� 1P
y0 ew·�(X(i),y0)

X

y0

ew·�(X(i),y0)�j(X
(i), y0)

⌘

=

NX

i=1

⇣
�j(X

(i), y(i))�
X

y0

ew·�(X(i),y0)

P
y00 ew·�(X(i),y00)

�j(X
(i), y0)

⌘

=

NX

i=1

⇣
�j(X

(i), y(i))�
X

y0

P (y0|X(i)
;w)�j(X

(i), y0)
⌘

L(w) =
NX

i=1

log p(y(i) | X(i)
;w) p(y | X;w) =

ew·�(X,y)

P
y0 ew·�(X,y0)

Derivative of the MaxEnt Objective

Total count of feature j
in correct candidates

Expected count of
feature j in predicted

candidates

L(w) =
NX

i=1

log p(y(i) | X(i)
;w) p(y | X;w) =

ew·�(X,y)

P
y0 ew·�(X,y0)

@

@wj
L(w) =

NX

i=1

⇣
�j(X

(i), y(i))�
X

y0

P (y0|X(i);w)�j(X
(i), y0)

⌘

Expected Counts
• The optimum parameters are the ones for

which each feature’s predicted expectation
equals its empirical expectation

1.0context-word:jail+cat:prison

context-word:jail+cat:food 0.0

0.7

0.4

Actual
Counts

Empirical
Counts

+0.3

-0.4

@

@wj
L(w) =

NX

i=1

⇣
�j(X

(i), y(i))�
X

y0

P (y0|X(i);w)�j(X
(i), y0)

⌘

What About Overfitting?
• For Naïve Bayes, we were worried about zero

counts in MLE estimates
– Can that happen here?

• Regularization (smoothing) for Log-linear models
– Instead, we worry about large feature weights
– Add a regularization term to the likelihood to push

weights towards zero

L(w) =
NX

i=1

log p(y(i)|X(i)
;w)� �

2

||w||2

Derivative of the Regularized
MaxEnt Objective

• Unfortunately, 𝑎𝑟𝑔𝑚𝑎𝑥𝑤	𝐿(𝑤) still doesn’t have a close
formed solution

• We will have to differentiate and use gradient ascent

Big weights
are badTotal count of feature j

in correct candidates
Expected count of

feature j in predicted
candidates

L(w) =
NX

i=1

w · �(X(i), y(i))� log

X

y

exp(w · �(X(i), y))

!
� �

2

||w||2

@

@wj
L(w) =

NX

i=1

�j(X

(i), y(i))�
X

y

p(y|X(i);w)�j(X
(i), y)

!
� �wj

Example: NER Regularization

Feature Type Feature PERS LOC
Previous word at -0.73 0.94
Current word Grace 0.03 0.00
Beginning bigram Gr 0.45 -0.04
Current POS tag NNP 0.47 0.45
Prev and cur tags IN NNP -0.10 0.14
Current signature Xx 0.80 0.46
Prev-cur-next sig x-Xx-Xx -0.69 0.37
P. state - p-cur sig O-x-Xx -0.20 0.82
…
Total: -0.58 2.68

Prev Cur Next
Word at Grace Road
Tag IN NNP NNP
Sig x Xx Xx

Local Context

Feature Weights
Because of regularization,
the more common prefixes
have larger weights even
though entire-word features
are more specific

A Very Nice Objective
• The MaxEnt objective behaves nicely:

– Differentiable (so many ways to optimize)
– Convex (so no local optima)

Convexity guarantees a single, global maximum value because
any higher points are greedily reachable

Learning Classifiers
• Two probabilistic approaches to predicting classes y*

– Joint: work with a joint probabilistic model of the data, weights are
(often) local conditional probabilities

• E.g., represent p(y,x) as Naïve Bayes model, compute 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦	𝑝(𝑦, 𝑋)
– Conditional: work with conditional probability 𝑝(𝑦 ∣ 𝑋)

• We can then direct compute 𝑦∗ 	= 	𝑎𝑟𝑔𝑚𝑎𝑥𝑦	𝑝(𝑦 ∣ 𝑋) Can develop feature
rich models for 𝑝(𝑦 ∣ 𝑋).

• But, why estimate a distribution at all?
– Linear predictor: 𝑦 ∗	= 	𝑎𝑟𝑔𝑚𝑎𝑥𝑦	𝑤 ⋅ 𝜙(𝑋, 𝑦)
– Perceptron algorithm

• Online (or batch)
• Error driven
• Simple, additive updates

Perceptron Learning
• The perceptron algorithm

– Iteratively processes the training set, reacting to training errors
– Can be thought of as trying to drive down training error

• The online (binary à 𝑦 = ±1) perceptron algorithm:
– Start with zero weights
– Visit training instances (𝑋 4 , 𝑦(4)) one by one, until all correct

• Make a prediction

• If correct (𝑦∗ == 𝑦(4)): no change, goto next example!
• If wrong: adjust weights

w = w � y⇤�(X(i))

y⇤ = sign(w · �(X(i)))

Two Simple Examples

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

X(4) = [0.25, 0.25], y(4) = �1

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

Data set I:

Data set II:

Geometric Interpretation
• The perceptron finds a separating

hyperplane

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

w = [1, 1]

w · [x, y] = 1⇥ x+ 1⇥ y = 0
Finding the hyperplane:

X(1)

X(2)
X(3)

Geometric Interpretation II

w

• Start with zero weights
• Visit training instances

(xi,yi) one by one, until all
correct
– Make a prediction

– If correct (y*==yi): no
change, goto next
example!

– If wrong: adjust weights

w0

y⇤ = 1, yi = �1
w = w � y⇤�(X(i))

y⇤ = sign(w · �(X(i)))

�y⇤ · �(X(i))

�(X(i))

Geometric Interpretation
• The perceptron finds a separating

hyperplane

X(1)

X(2)
X(3)

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

X(4) = [0.25, 0.25], y(4) = �1
X(4)

w = [0.75, 0.75]

w = [1, 1]

w = [0.5, 0.5]

w = [0.25, 0.25]

w = [0, 0]

Is there a separating hyperplane?

Adding Bias
• Decision rule:

• Algorithm stays the same!
• Only difference: dummy always-on feature

y⇤ = sign(w · �(X(i)) + b)

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

X(1) = [1, 1, 1], y(1) = 1

X(2) = [1, 1,�1], y(2) = 1

X(3) = [1,�1,�1], y(3) = �1

w = [0, 0, 0] 2 R3w = [0, 0] 2 R2

Simple Example with Bias

X(1) = [1, 1], y(1) = 1

X(2) = [1,�1], y(2) = 1

X(3) = [�1,�1], y(3) = �1

X(4) = [0.25, 0.25], y(4) = �1

Data set:

Separable Case

Multiclass Perceptron
• If we have multiple classes:

– A weight vector for each class:

– Score (activation) of a class y:

– Prediction highest score wins

wy

w1

w2
w3

biggest

biggest

biggestwy · �(X)

y⇤ = argmax

y
wy · �(X)

w1 · �(X)

w2 · �(X)

w3 · �(X)

Multiclass Perceptron
• Start with zero weights
• Visit training instances (𝑋 4 , 𝑦(4)) one by one

– Make a prediction

– If correct (𝑦∗==𝑦(4)): no change, continue!
– If wrong: adjust weights

wyi

wy⇤

�(X)

y⇤ = argmax

y
wy · �(X(i)

)

wy(i) = wy(i) + �(X(i))

wy⇤ = wy⇤ � �(X(i))

Multiclass Perceptron: Rewrite
• Compare all possible outputs

– Highest score wins
– Approximate visualization

(usually hard)

y⇤ = argmax

y
w · �(X, y)

w · �(X, y1)

biggest

w · �(X, y2)

biggest

w · �(X, y3)

biggest

Perceptron Learning
• Start with zero weights
• Visit training instances (xi,yi) one by one

– Make a prediction

– If correct (y*==yi): no change, goto next example!
– If wrong: adjust weights

y⇤ = argmax

y
w · �(X(i), y)

w = w + �(X(i), y(i))� �(X(i), y⇤)

From MaxEnt to the Perceptron
• Prediction:
• Update:

• MaxEnt gradient for xi:

Approximate
expectation
with max!

Expectation

w = w + �(X(i), y(i))� �(X(i), y⇤)

@

@wj
L(w) = �j(X

(i)
, y

(i))�
X

y0

P (y0|x(i);w)�j(x
(i)
, y

0)

⇡ �j(X
(i), y(i))� �j(X

(i), y⇤)

where y⇤ = argmax

y
w · �j(X

(i), y)

y⇤ = argmax

y
w · �(X(i), y)

Perceptron Learning
• No counting or computing

probabilities on training set
• Separability: some parameters get

the training set perfectly correct
• Convergence: if the training is

separable, perceptron will
eventually converge

• Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

Separable

Non-Separable

Published: July 8, 1958
Copyright © The New York Times

July 8, 1958

Problems with the Perceptron
• Noise: if the data isn’t

separable, weights might
thrash
– Averaging weight vectors

over time can help
(averaged perceptron)

• Mediocre generalization:
finds a “barely”
separating solution

• Overtraining: test / held-
out accuracy usually
rises, then falls
– Overtraining is a kind of

overfitting

Three Views of Classification
• Naïve Bayes:

– Parameters from data statistics
– Parameters: probabilistic interpretation
– Training: one pass through the data

• Log-linear models:
– Parameters from gradient ascent
– Parameters: linear, probabilistic model,

and discriminative
– Training: gradient ascent (usually batch),

regularize to stop overfitting
• The Perceptron:

– Parameters from reactions to mistakes
– Parameters: discriminative interpretation
– Training: go through the data until held-out

accuracy maxes out

Training
Data

Development
Data

Held-out
Data

A Note on Features: TF/IDF
• More frequent terms in a document are more important:

• May want to normalize term frequency (tf) by dividing by the
frequency of the most common term in the document:

• Terms that appear in many different documents are less indicative:

• An indication of a term’s discrimination power
• Log used to dampen the effect relative to tf
• A typical combined term important indicator is tf-idf weighting

fij = frequency of term i in document j

tfij = fij/maxi{fij}

dfi = document frequency of term i = number of documents containing term i
idfi = inverse document frequency of term i = log2(N/dfi)

N = total number of documents

wij = tfijidfi = tfij log2(N/dfi)

