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• 2 basic types: woven and knit

• We’ll restrict to woven

• Warp vs. weft

What is cloth?

House, Breen [2000]



• Infinite number of varieties --

• Thread type (wool, polyester, mixtures...)

• Weave type (plain, twill, basket, satin...)

• Weave direction (bias cut; warp vs. weft)

• Seams (fashion design)

• Hysteresis (ironed vs. crumpled in a suitcase)

What makes cloth special?

From Ko, Choi [2002]



• Model

• Complex microstructure

• Realism

• Simplicity

• Integrator

• Dealing with stiffness

• Collision handling

Challenges in cloth simulation

Breen, House, Wozny [1994]

Vollino (sic), Courchesne, 
Magnenat-Thalmann [1998]
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An (abbreviated) cloth bestiary
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• In general, cloth resists motion in 4 directions:

Cloth modeling basics

In-plane 
stretch

In-plane
compression

In-plane shear
(trellising)

Out-of-plane
bending



• Simple spring-mass system due to Provot [1995]

• You already know how to implement this

A basic mass-spring model

Bend spring Shear spring Stretch spring



• Various modifications to deal with 
collisions, etc.

Early continuum models

Terzopolous, Platt, 
Barr, Fleischer [1987]

Carignan, Yang, Thalmann, 
Thalmann [1992]

Generally not used in practice (although many 
models use ideas from continuum physics)



• Breen [1992]: energy-based model

• Find final draping position by minimizing the total 
energy in the cloth

• NOT dynamic!

Particle-based methods

Ui = Urepeli + Ustretchi
+ Ubendi

+ Utrellisi

Note:   You could convert this 
to a “normal” particle system 
model by differentiating 
energy w.r.t. position,

F = −∇xU



• Tries to make the drape more 
realistic by measuring from 
reality

• Uses the Kawabata system

• Fit functions to the measured 
data

Breen [1984]

Kawabata plots for 3 different types
 of fabric (Breen, House, Wozny [1994])



• A system for measuring the parameters of cloth

• Stretch

• Shear

• Bend

• Friction

• Developed by Kawabata [1984], used heavily in the 
textile engineering industry

(aside) The Kawabata system

From Virtual Clothing [ Volino, Magnenat-Thalmann]



Breen [1984] (2)



• A hybrid approach:

• Energy-function-based (similar to Breen)

• Sparse Jacobian

• Linear forces for numerical reasons

• Triangle-based

• Energy functions defined over finite regions

• But how do we determine stretch and shear 
on triangles (especially if we want to privilege 
warp and weft directions)?

Baraff, Witkin [1998]



• Basic idea: treat the cloth as a 2-dimensional 
manifold embedded in 

Baraff, Witkin [1998] (2)

R3

Note that this mapping only needs to be valid locally 
(useful for clothing) 

u

v

x

y

z

w(u, v)



We are interested in the vectors      and 

Baraff, Witkin [1998] (3)

wu wv

∆x1

∆x2

w(u, v)

(∆
u 1

,∆
v 1

)
(∆u2, ∆v2)

If we pretend that w is locally linear, we get
∆x1 = wu∆u1 + wv∆v1

∆x2 = wu∆u2 + wv∆v2

u

v

x

y

z



• Energy functions are defined in terms of a 
(heuristic) “soft” constraint function        , e.g.

Baraff, Witkin [1998] (4)

C(x)

C(x) = a

(||wu(x)||− bu

||wv(x)||− bv

)Stretch: 

Shear: 

triangle area rest length

C(x) = awu(x)Twv(x)

Bend: 
C(x) = θ

angle between triangle faces

f(x) = −∂EC

∂x

Now, energy and force are defined as
Ec(x) =

k

2
C(x)TC(x)



• Damping forces turn out to be important both for 
realism and numerical stability

• Damping forces should

• Act in direction of corresponding elastic force

• Be proportional to the velocity in that direction
Hence, we derive (this should look familiar)

where

Baraff, Witkin [1998] (5)

d = −kdĊ(x)
∂C(x)

∂x

Ċ(x) =
∂C(x)

∂t
=

∂C(x)

∂x

∂x

∂t

Direction of force



Baraff, Witkin [1998] (6)



Baraff, Witkin [1998] (7)

• Use by Alias|Wavefront in Maya Cloth

• Something similar used by Pixar



Basic problem: when we push on a piece of cloth like 
this,

we expect to see this:

But, in our basic particle system model, we have to 
make the compression forces very stiff to get 
significant out-of-plane motion.  This is expensive.

Ko, Choi [2002]



Ko, Choi use column buckling as their basic model.

They replace bend and compression forces with a 
single nonlinear model.

Ko, Choi [2002] (2)



Ko, Choi [2002] (3)



Ko, Choi [2002] (4)



Ko, Choi [2002] (5)



• Overview

• Models

• Integrating stiff systems

• Collision handling

Outline



Recall

What does this mean?

Stiffness in ODEs

“Loosely speaking, the initial value problem is 
referred to as being stiff if the absolute stability 
requirement dictates a much smaller time step 
than is needed to satisfy approximation 
requirements alone.”  (Ascher, Petzold [1997])



Consider the following ODE:

The analytical solution is

If we solve it with Euler’s method,

What happens when           ?

Stiffness in ODEs -- example

dx

dt
= −kx, k " 1

x(t) = Ce−kt

Barely stable Unstable

xt+h = xt − hkxt = (1− hk)xt

hk ! 1



• In general, cloth stretches little if at all in the plane

• To counter this, we generally have large in-plane 
stretch forces (otherwise the cloth looks “wiggly”)

• The result:  stiffness!

Stiffness in cloth



• The solution is to use implicit methods 
(Terzopolous et al. [1987], Baraff/Witkin [1998])

• Basic idea: express the derivatives at the current 
timestep in terms of the system state at the next 
timestep; e.g., backward Euler:

We can apply this to our test equation,

And, voila! For any           , |x| actually decreases as a 
function of time.

Implicit Euler

xt+h = xt + h(−kxt+h)

xt+h(1 + hk) = xt

xt+h =
xt

1 + hk

hk > 0

yt+h = yt + hf(t + h,yt+h)



The drawback is that if we look at our equation,

        appears on both sides of the equation -- hence 
the name “implicit.”

Solution: rewrite it as 

and use Newton’s method.

Implicit Euler (2)

yt+h = yt + hf(t + h,yt+h)

yt+h

g(yt+h) = yt+h − yt − hf(t + h,yt+h) = 0



For a nonlinear equation

with some initial guess    , we can iterate: for a given 
iterate    , we find the next by solving the linear 
equation

Newton’s method

g(x) = 0

x0

0 = g(xν) + g′(xν)(x − xν)

xν

xνxν+1



In m dimensions, this becomes

Or, rearranging to make it easier to solve,

We can use solve this with our favorite linear 
systems solver.

Newton’s method (2)

g(x) = 0

xν+1 = xν −
(

∂g

∂x
(xν)

)−1

g(xν), ν = 0, 1, . . .

∂g

∂x
(xν+1 − xν) = −g(xν), ν = 0, 1, . . .



Newton’s method on the equation

results in the equation

or

Rewriting as usual to eliminate the matrix inverse,

With the initial guess              , the first iteration is

Implicit Euler (3)

yν+1
t+h = yν

t+h −
(

∂g

∂y

)−1

g(yν
t+h)

g(yt+h) = yt+h − yt − hf(t + h,yt+h) = 0

yν+1
t+h = yν

t+h −
(
I− h

∂f

∂y

)−1

(yν
t+h − yt − hf(t + h,yν

t+h))

(
I− h

∂f

∂y

)
(yν+1

t+h − yν
t+h) = −yν

t+h + yt + hf(t + h,yν
t+h)

y0
t+h = yt(

I− h
∂f

∂y

)
(yt+h − yt) = hf(t + h,yt)



Recall that our differential equation for cloth is (in 
state-space formulation),

The implicit Euler method is

Take the first Newton iteration only (for speed):

Baraff and Witkin reduce the dimensionality by back-
substituting Δx into the equation for Δv

Implicit Euler in Baraff/Witkin

[
xt+h

vt+h

]
=

[
xt

vt

]
+ h

[
vt+h

M−1f(xt+h,vt+h)

]

(
I− h

[
0 I

M−1 ∂f
∂x M−1 ∂f

∂v

]) [
∆x
∆v

]
= h

[
v

M−1f(xt,vt)

]

d

dt

[
x
v

]
=

[
v

M−1f(x,v)

]



The final equation they solve is

Assuming a reasonable force model, this is (almost) 
symmetric and positive definite, so it can be solved 
using conjugate gradient.

Implicit Euler in B/W (2)

(
M− h

∂f

∂v
− h2 ∂f

∂x

)
∆v = h

(
f0 + h

∂f

∂x
v0

)
(
I− hM−1 ∂f

∂v
− h2M−1 ∂f

∂x

)
∆v = hM−1

(
f0 + h

∂f

∂x
v0

)



In many cases, we would actually like certain masses 
to be ∞, e.g., for constraints.  

In this case, the matrix M-1 is rank deficient, 
multiplying by M is meaningless

Solution: use the “unconstrained” M matrix in PCG -- 
but after every iteration project back onto the 
constraint manifold.

For details, consult Baraff and Witkin [1998].  Also:

Conjugate Gradient in B/W

Ascher, U. and Boxerman, E.  “On the modified conjugate gradient method in cloth 
simulation.”  http://www.cs.ubc.ca/spider/ascher/papers/ab.pdf



Implicit Euler has only first-order accuracy

More recently, people have been using 2nd-order 
backward differences (Ko/Choi [2002], Bridson et al 
[2002]).

• Multistep

• 2nd order accuracy

Higher-order implicit methods



An alternative approach is to avoid stiffness 
altogether by applying only non-stiff spring forces and 
then “fixing” the solution at the end of the timestep.
(Provot [1995], Desbrun et al [1999], Bridson et al 
[2002])

We can do this with impulses and Jacobi iteration.

Avoiding stiffness

Iteration 1 Iteration 2 Iteration 3 (converged)



• Popular for interactive applications

• Justification

• Biphasic spring model

•
•
•
•
•
•
•
• Plausible dynamics

Avoiding stiffness (2)

Iteration 1 Iteration 2 Iteration 3 (converged)

From Desbrun, Meyer, Barr [2000]



• Overview

• Models

• Integrating stiff systems

• Collision handling

Outline



Collisions with rigid objects

• Current best practice: use implicit surfaces

[Frisken, Perry, Rockwood, Jones 2000]



Collisions with rigid objects (2)

g(x) > 0

g(x) < 0

g(x) = 0

!g(x1)

!g(x2)

f(x) ! "g(x)



Collisions with rigid objects (3)

• See also [Bridson, Marino, Fedkiw 2003]

Bridson et al. / Simulation of Clothing

Figure 2: Cloth penetrating an object may be pushed just

to the surface (upper right) destroying wrinkles, or may be

pushed to a band outside the object using our monotone

mapping (lower right) preserving wrinkles.

on the cloth mesh and sticky regions are denoted on either

object geometry or on the cloth mesh itself. We implement

these regions as time varying attributes so that interactions

can be animated and timed to yield specific performances.

Regardless of the object or cloth geometry upon which a

sticky region is defined, we triangulate these sticky regions

and constrain the velocity of the triangle vertices so that the

triangles move with the underlying geometry. Then when

a node from an adhering region of the cloth moves within

some user prescribed tolerance of a triangle in a sticky re-

gion, the constraint is activated and the current offset of

the adhering point in the triangles local coordinate system

is recorded. Our goal is to constrain the adhering point to

stay in this same relative location translating and rotating

with the triangle. This is similar to Chang et al.10, except

that our constraints can be broken and formed many times

during a simulation similar to Jimenez and Luciani31. Since

our method is applied dynamically, a given adhering point

may come within a user prescribed tolerance of many tri-

angles and thus have offsets linking it to many points. We

resolve this by attracting our adhering point to the average

position dictated by the constraining triangles.

Instead of attracting our adhering point to its target posi-

tion with a zero rest length spring31, 10, we instead dynami-

cally (i.e. the spring location and length change every time

step) attach a zero rest length spring between the predicted

location of the adhering point, xnew = xold +!!v, and the

predicated location of the target point at the end of a user

prescribed time interval !!. Similar to Chang et al.10, we

deactivate the constraint if the distance between the adher-

ing point and the target point exceeds a threshold, and the

spring constant smoothly decreases to zero as this threshold

is approached. This gives a smooth deactivation of the dy-

namic constraint. Figure 6 illustrates our dynamic sticking

constraints with a digital garment.

7. Conclusions

Throughout this paper we have stressed methods that pre-

serve folds and wrinkles in cloth simulations. This included a

mixed explicit/implicit time integration scheme, a derivation

of physically correct bending forces with possibly nonzero

rest angles for modeling wrinkles into the cloth, an inter-

face forecasting collision response method for enhanced dy-

namic behavior, a new post-processing technique that pushes

cloth into an interval while preserving relative depths and

thus wrinkles, and a dynamic sticking constraint for control-

lability.
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Self-collisions

• First problem: detection

vs.



Self-collisions: detection

• Solution: store curvature information in the 
bounding volume hierarchy ([Volino and Magnenat-
Thalmann 1994] [Provot 1997])
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The “infinite thinness” problem

Which way is “out”?



The “infinite thinness” problem

• Solution 1: algorithmically infer orientation

Fig. 4 : Orientation ambiguity and collision consistency.

Our contribution has been to create algorithms able to correctly orient the detected collisions so

as to correct any wrong situation. We use a combination of techniques described below.Locally [Volino, Courchesne, 
Magnenat-Thalmann 1995]



The “infinite thinness” problem 

• Solution 1: algorithmically infer orientation

Globally [Baraff, Witkin 2003]



The “infinite thinness” problem

• Solution 2: assume everything starts consistent, 
never allow anything to pass through

• but how?



• Generally need to do triangle-triangle collision 
checks:

Collision detection

Point-face collisionEdge-edge collision



If triangles are moving too fast, they may pass through 
each other in a single timestep.

We can prevent this by checking for any collisions 
during the timestep (Provot [1997])

Note first that both point-face and edge-edge 
collisions occur when the appropriate 4 points are 
coplanar

Robust collision detection



Detecting time of coplanarity - assume linear velocity 
throughout timestep:

So the problem reduces to finding roots of the cubic 
equation

Once we have these roots, we can plug back in and 
test for triangle adjacency.

Robust collision detection (2)

x12 + tv12

x
13 + tv

13

x14 + tv14

(x12 + tv12)× (x13 + tv13)

(
(x12 + tv12)× (x13 + tv13)

) · (x14 + tv14)



• 4 basic options:

• Constraint-based

• Penalty forces

• Impulse-based

• Rigid body dynamics (will explain)

Collision response



• Assume totally inelastic collision

• Constrain particle to lie on triangle surface

• Benefits:

• Fast, may not add stiffness (e.g., Baraff/Witkin)

• No extra damping needed

• Drawbacks

• Only supports point-face collisions

• Constraint attachment, release add 
discontinuities (constants hard to get right)

• Doesn’t handle self-collisions (generally)

• Conclusion: a good place to start, but not robust 
enough for heavy-duty work

Constraint-based response



• Must keep track of constraint forces in the 
simulator -- that is, the force the simulator is 
applying to maintain the constraint

• If constraint force opposes surface normal, need to 
release particle

Constraint-based response (4)



• Apply a spring force that keeps particles away from 
each other

• Benefits:

• Easy to fit into an existing simulator

• Works with all kinds of collisions (use 
barycentric coordinates to distribute responses 
among vertices)

• Drawbacks:

• Hard to tune: if force is too weak, it will 
sometimes fail; if force is too strong, it will cause 
the particles to “float” and “wiggle”

Penalty forces



• In general, penalty forces are not inelastic (springs 
store energy)

• Can be made less elastic by limiting force when 
particles are moving away

• Some kind of additional damping may be needed to 
control deformation rate along surface

Penalty forces (2)



• “Instantaneous” change in momentum

• Generally applied outside the simulator timestep 
(similar to strain limiting)

• Benefits

• Correctly stops all collisions (no sloppy spring 
forces)

• Drawbacks

• Can have poor numerical performance

• Handles persistent contact poorly

Impulses

J =

∫ tf

ti

F dt = pf − pi



Iteration is generally necessary to remove all 
collisions.

Impulses (2)

Convergence may be slow in some cases.



• Basic idea: if a group of particles start timestep 
collision-free, and move as a rigid body throughout 
the timestep, then they will end timestep collision-
free.

• We can group particles involved in a collision 
together and move them as a rigid body (Provot 
[1997] -- error?, Bridson [2002])

Rigid collision impact zones

xCM =

∑
i mixi

mi
vCM =

∑
i mivi

mi

L =
∑

i

mi(xi − xCM)× (vi − vCM)

I =
∑

i

m
(|xi − xCM |2δ − (xi − xCM)⊗ (xi − xCM)

)
ω = I−1L

vi = vCM + ω × (xi − xCM)

Momentum

Inertia tensor

Angular velocity

Center of mass frame

Final velocity



• Note that this is totally failsafe

• We will need to iterate, and merge impact zones 
as we do (e.g. until the impact zone includes all 
colliding particles)

• This is best used as a last resort, because rigid 
body cloth can be unappealing.

Rigid collision impact zones (2)



• So we have:

• penalty forces - not robust, not intrusive (i.e., 
integrates with solver)

• impulses - robust (esp. with iteration), intrusive - 
but may not converge

• rigid impact zones - completely robust, 
guaranteed convergence, but very intrusive

Solution?  Use all three!  (Bridson et al [2002])

Combining methods



Basic methodology (Bridson et al [2002]):
1. Apply penalty forces (implicitly)
2. While there are collisions left

1. Check robustly for collisions
2. Apply impulses

3. After several iterations of this, start grouping 
particles into rigid impact zones

4.
Objective: guaranteed convergence with minimal 
interference with cloth internal dynamics

Combining methods (2)



Bridson et al. [2002]



Bridson et al. [2002]



Bridson 2003 (?)
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