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What is cloth?

® ) basic types: woven and knit
® We'll restrict to woven
® Warp vs. weft

shed

""'-.

P naa — - ’ — b) twill c) satin

Figure 1.8. The weaving process.
House, Breen [2000]



VWhat makes cloth special?

® Infinite number of varieties --

® Thread type (wool, polyester, mixtures...)
Weave type (plain, twill, basket, satin...)
Weave direction (bias cut; warp vs. weft)
Seams (fashion design)

Hysteresis (ironed vs. crumpled in a suitcase)

From Ko, Choi [2002]



Challenges in cloth

® Model
® Complex microstructure
® Realism i
® Simplicity SR

® Integrator
® Dealing with stiffness
® Collision handling

Vollino (sic), Courchesne,
Magnenat-Thalmann [1998]
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Cloth modeling basics

® |n general, cloth resists motion in 4 directions:

In-plane In-plane In-plane shear Out-of-plane
stretch compression (trellising) bending



A basic mass-spring mode|

® Simple spring-mass system due to Provot [1995]
® You already know how to implement this

Bend spring  Shear spring  Stretch spring

\

XX




Early continuum models

® Various modifications to deal with
collisions, etc.

Terzopolous, Platt,
Barr, Fleischer [1987]

Generally not used in practice (although many

Carignan,Yang, Thalmann,

Thalmann [1992] models use ideas from continuum physics)



Particle-based methods

® Breen [1992]: energy-based model

Ui — Urepelz- + Ustretchi + Ubendi + Utrellisi
® Find final draping position by minimizing the total
energy in the cloth

Rj*Sj b t . B
¢ NOT dynamic! Janinl ey |\
NP N

ij T o
b a b ~lj

|. Collision and Stretching Il. Bending

Note: You could convert this
to a “normal” particle system
model by differentiating e
energy w.r.t. position,

F=-VU

Figure 3: Cloth model energy functions



Breen [1984]

® Tries to make the drape more

realistic by measuring from
reality

® Uses the Kawabata system

® Fit functions to the measured
data

SHEAR

a) 100% cotton

NNNNNNN SHEAR

LLLLLL
”

b) 100% wool

SHEAR

¢) polyester/cotton
Kawabata plots for 3 different types
of fabric (Breen, House,Wozny [1994])



(aside) The Kawabata system

® A system for measuring the parameters of cloth
® Stretch
® Shear
® Bend
® Friction

® Developed by Kawabata [1984], used heavily in the
textile engineering industry

Fig. 2.4. The tensile test, and the KES-FB1 machine.

From Virtual Clothing [ Volino, Magnenat-Thalmann]



Breen [1984] (2)

Figure 6: Actual (left) vs. simulated (right) cloth drape



Baraff, Witkin [1998]

® A hybrid approach:
® Energy-function-based (similar to Breen)
® Sparse Jacobian
® Linear forces for numerical reasons
® Triangle-based
® Energy functions defined over finite regions

® But how do we determine stretch and shear
on triangles (especially if we want to privilege
warp and weft directions)?



Baraff, Witkin [1998] (2)

® Basic idea: treat the cloth as a 2-dimensional
manifold embedded in R’

w(u, v)

Note that this mapping only needs to be valid locally
(useful for clothing)



Baraff, Witkin [1998] (3)

We are interested in the vectors w, and w,

w(u, v)

(AUQ, 47}2)

If we pretend that w is locally linear, we get

Ax; = w,Auy + w,Av;
Ax9 = W,Auy + W,Avy



Baraff, Witkin [1998] (4)

® Energy functions are defined in terms of a
(heuristic) “soft” constraint function C(x), e.g.

triangle area rest length

Stretch:

Shear:

C(x) = aw,(x)! w,(x)

Be n d: angle between triangle faces

Cx)=46

Now, energy and force are defined as

k
Eelx) = 5C(x)" C(x) flx) =~



Baraff, Witkin [1998] (5)

® Damping forces turn out to be important both for
realism and numerical stability

® Damping forces should
® Act in direction of corresponding elastic force
® Be proportional to the velocity in that direction

Hence, we derive (this should look familiar)

d = —kC(x) a(;}((x)

Wh ere _ Direction of force

: - 0C(x) 0C(x)0x
CoO =5 = “ox o




Figure 1 (top row): Cloth draping on cylinder; frames 8 13 and 35, Figure 2 (second row): Sheet with two fixed particles; Figure 5 (top row): Dancer with short skirt: frames 110, 136 and 155. Figure 6 (middle row): Dancer with long skirt:
frames 10, 29 and 67. Figure 3 (third row): Shirt on twisting figure: frames 1, 24 and 46. Figure 4 (bottom row): Walking man; frames 185, 215 and 236. Figure 7 (bottom row}: Closeups from figures 4 and 6.
frames 30, 45 and 58,




Baraff, Witkin [1998] (/)

® Use by Alias|Wavefront in Maya Cloth
® Something similar used by Pixar




Ko, Choi [2002]

Basic problem: when we push on a piece of cloth like

this,
_/”/_\

we expect to see this:

A

But, in our basic particle system model, we have to
make the compression forces very stiff to get
significant out-of-plane motion. This is expensive.

eI g



Ko, Choi [2002] (2)

Ko, Choi use column buckling as their basic model.
@

e

Figure 3: Column Buckling

They replace bend and compression forces with a
single nonlinear model. ..

Pk,
o imperfection
effect \ -B
-0k 4




Ko, Choi [2002] (3)




Ko, Choi [2002] (4)




Ko, Choi [2002] (5)
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Stiffness in ODEs

Recall

“Loosely speaking, the initial value problem is
referred to as being stiff if the absolute stability
requirement dictates a much smaller time step
than is needed to satisfy approximation
requirements alone.” (Ascher, Petzold [1997])

What does this mean?



Stiffness in ODEs -- example

Consider the following ODE:

dx
— = —k k 1
dt + >

The analytical solution is
x(t) = Ce M

If we solve it with Euler’s method,

Tiop = oy — hkxy = (1 — hk)xy

Barely stable Unstable

What happens when hk > 12



Stiffness in cloth

® |n general, cloth stretches little if at all in the plane

® TJo counter this, we generally have large in-plane
stretch forces (otherwise the cloth looks “wiggly”)

® The result: stiffness!



Implicit Euler

® The solution is to use implicit methods
(Terzopolous et al. [1987], Baraff/Witkin [1998])

® Basic idea: express the derivatives at the current
timestep in terms of the system state at the next
timestep; e.g., backward Euler:

Virnh =Y+ hE(t + A, yin)
We can apply this to our test equation,

Tion = Ty + h(—kxees)
CE’H_}L(l + hk) — Tt

Lt
:I;' _—
T hk

And, voila! For any hk >0, |x| actually decreases as a
function of time.




Implicit Euler (2)

The drawback is that if we look at our equation,
Vien =Yi + hf(t + b, yiin)

Yt+h appears on both sides of the equation -- hence
the name “implicit.”

Solution: rewrite it as
g(Yt4n) =Yeen — Yt — Mt +h,yin) =0

and use Newton’s method.



Newton’s method

For a nonlinear equation
glz) =0

with some initial guess z', we can iterate: for a given
iterate z', we find the next by solving the linear

equation
0=g(z") +¢'(z")(x — z")

A

s T



Newton’s method (2)

In m dimensions, this becomes

g(x)=0
—1
x"T = x" — (%(X”)) g(x"), v=0,1,...

Or, rearranging to make it easier to solve,
g
0x

(x'* —x") = —g(x"), v =0,1,...

We can use solve this with our favorite linear
systems solver.



Implicit Euler (3)

Newton’s method on the equation
g(Yten) =Yirn — Yyt — Mt + h,yin) =0

results in the equation
vt =y - (28) elyia)
t+h t+h ay t+h
or »
v+1 v of v v
Yiin =Yen — (1= h% (Yien —ye — hE(E+ R, yip)

Rewriting as usual to eliminate the matrix inverse,

of , y y y
(I - h@) (YHJ-F}% = Yien) = —Yien + e hEE+ Ry

With the initial guess i, = Y1, the first iteration is

of
(I — h@) (Yesn —yi) = hE(t + R, yi)



Implicit Euler in Baraff/Witkin

Recall that our differential equation for cloth is (in
state-space formulation),

d |x v
dt [V_ - [le(x, V)]
The implicit Euler method is

Xt+h_ _ | Xt T h Vith
Vith] Vi M (X n, Virn)

Take the first Newton iteration only (for speed):

I h_ 0 I Ax _ v
- _1\/[—1% M_lg Av| — T M (x4, vy)

Baraff and Witkin reduce the dimensionality by back-
substituting Ax into the equation for Av




Implicit Euler in B/WV (2)

The final equation they solve is

(I — hm—lﬁ — h%\dlﬁ) Av = hM ™! (fo + hﬁ )

ov ox Ix "
of  ,of of

Assuming a reasonable force model, this is (almost)
symmetric and positive definite, so it can be solved
using conjugate gradient.



Conjugate Gradient in B/W

In many cases, we would actually like certain masses
to be =, e.g., for constraints.

In this case, the matrix M-' is rank deficient,
multiplying by M is meaningless

Solution: use the “unconstrained”’ M matrix in PCG --
but after every iteration project back onto the
constraint manifold.

For details, consult Baraff and Witkin [1998]. Also:

Ascher, U. and Boxerman, E. “On the modified conjugate gradient method in cloth
simulation.” http://www.cs.ubc.ca/spider/ascher/papers/ab.pdf



Higher-order implicit methods

Implicit Euler has only first-order accuracy

More recently, people have been using 2nd-order
backward differences (Ko/Choi [2002], Bridson et al
[2002]).

® Multistep
® )nd order accuracy



Avoiding stiffness

An alternative approach is to avoid stiffness

altogether by applying only non-stiff spring forces and
then “fixing”’ the solution at the end of the timestep.

(Provot [1995], Desbrun et al [1999], Bridson et al
[2002])

We can do this with impulses and Jacobi iteration.

Iteration 1 lteration 2 Iteration 3 (converged)



Avoiding stiffness (2)

® Popular for interactive applications @ ® ®

Iteration 1 Iteration 2 Iteration 3 (c

® Justification

® Biphasic spring model

|

— Linear elastic region
5

Displacement

L .
Force

From Desbrun, Meyer, Barr [2000]

Plausible dynamics
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Collisions with rigid objects

® Current best practice: use implicit surfaces

T1T
FH |

T 1T
T HHe

[Frisken, Perry, Rockwood, Jones 2000]

*‘P =




Collisions with rigid objects (2) lﬁ

f(x) o« Vg(x)




Collisions with rigid objects (3) l@f

® See also [Bridson, Marino, Fedkiw 2003]
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Self-collisions

® First problem: detection

S
L




Self-collisions: detection -

® Solution: store curvature information in the
bounding volume hierarchy ([Volino and Magnenat-

Thalmann 1994] [Provot 1997])




4

The “infinite thinness” problem -

Which way is “out’?




The “infinite thinness” problem

® Solution I:algorithmically infer orientation

Consistent callision orientations

A= Wrong side 0 =Right side

Locally [Volino, Courchesne,
Magnenat-Thalmann 1995]




CCe ; ; 99 @Z
The “infinite thinness” problem -

® Solution I:algorithmically infer orientation

Globally [Baraff, Witkin 2003]




The “infinite thinness” problem -

® Solution 2:assume everything starts consistent,
never allow anything to pass through

® but how!



Collision detection

® Generally need to do triangle-triangle collision

checks:

Edge-edge collision

Point-face collision




s

Robust collision detection a

If triangles are moving too fast, they may pass through
each other in a single timestep.

We can prevent this by checking for any collisions
during the timestep (Provot [1997])

Note first that both point-face and edge-edge
collisions occur when the appropriate 4 points are
coplanar




7

Robust collision detection (2) -

Detecting time of coplanarity - assume linear velocity
throughout timestep:

(x19 + tvia) X (X313 + tvy3)

X14 + tV14

So the problem reduces to finding roots of the cubic

equation
(<X12 + tV12> X <X13 + tVlg)) . <X14 -+ tV14>

Once we have these roots, we can plug back in and
test for triangle adjacency.



Collision response

® 4 basic options:
® Constraint-based
Penalty forces

°
® |mpulse-based
® Rigid body dynamics (will explain) ‘L



s

Constraint-based response a

® Assume totally inelastic collision

® Constrain particle to lie on triangle surface /;-,
® Benefits: £ ‘1\

® Fast, may not add stiffness (e.g., Baraff/Witkin)___“__"'
® No extra damping needed

® Drawbacks
® Only supports point-face collisions

® Constraint attachment, release add
discontinuities (constants hard to get right)

® Doesn’t handle self-collisions (generally)

® Conclusion: a good place to start, but not robust
enough for heavy-duty work



Constraint-based response (4)

® Must keep track of constraint forces in the
simulator -- that is, the force the simulator is
applying to maintain the constraint

® [f constraint force opposes surface normal, need to
release particle



Penalty forces

® Apply a spring force that keeps particles away from
each other

® Benefits:
® Easy to fit into an existing simulator //

® VWorks with all kinds of collisions (use
barycentric coordinates to distribute responses
among vertices)

® Drawbacks:

® Hard to tune:if force is too weak, it will
sometimes fail; if force is too strong, it will cause
the particles to “float” and “wiggle”



Penalty forces (2) %ff

® |n general, penalty forces are not inelastic (springs
store energy)

® Can be made less elastic by limiting force when
particles are moving away

® Some kind of additional damping may be needed to
control deformation rate along surface



Impulses

® “Instantaneous’” change in momentum

ty
J:/ Fdi =ps— pi
t;

® Generally applied outside the simulator timestep
(similar to strain limiting)

® Benefits

® Correctly stops all collisions (no sloppy spring
forces)

® Drawbacks
® Can have poor numerical performance
® Handles persistent contact poorly



Impulses (2)

Iteration is generally necessary to remove all

collisions.

7
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Final state

Apply impulse responses

Convergence may be slow in some cases.



Rigid collision impact zones e

® Basic idea: if a group of particles start timestep
collision-free, and move as a rigid body throughout
the timestep, then they will end timestep collision-

i

[
Y
| N

free.
. ) . . of mass
® Ve can group particles involved in a collision K
together and move them as a rigid body (Provot V
[1997] -- error?, Bridson [2002])
Zi miX; i MV
LOM = . VoM = . Center of mass frame
L= Z m;(x; — Xcop) X (Vi — Vo) Momentum

I = Z m (’XZ — XCMP& - (XZ’ — XCM) &) (XZ' — XCM)) Inertia tensor
w=I"'L Angular velocity

Vi =Voy T w X (Xi — XCM) Final velocity



4

Rigid collision impact zones (2) -

® Note that this is totally failsafe

® Ve will need to iterate, and merge impact zones
as we do (e.g. until the impact zone includes all
colliding particles) center 4

® This is best used as a last resort, because rigid
body cloth can be unappealing.




Combining methods

® So we have:
® penalty forces - not robust, not intrusive (i.e.,/\?

Integrates with solve I") '/\

® impulses - robust (esp. with iteration), intrusive -
but may not converge

® rigid impact zones - completely robust, |
guaranteed convergence, but very intrusive °

Solution? Use all three! (Bridson et al [2002])



Combining methods (2)

Basic methodology (Bridson et al [2002]):
|. Apply penalty forces (implicitly)
2. While there are collisions left
|. Check robustly for collisions
2. Apply impulses

3. After several iterations of this, start grouping
particles into rigid impact zones

4.

Obijective: guaranteed convergence with minimal
interference with cloth internal dynamics



Bridson et al. [2002]




Bridson et al. [2002]




Bridson 2003 (?)
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