Cloth Animation

Christopher Twigg March 4, 2003

Outline

Overview

Models

• Integrating stiff systems

Collision handling

Outline

Overview

Models

• Integrating stiff systems

Collision handling

What is cloth?

- 2 basic types: woven and knit
- We'll restrict to woven
 - Warp vs. weft

b) twill

c) satin

Figure 1.8. The weaving process.

House, Breen [2000]

What makes cloth special?

- Infinite number of varieties --
 - Thread type (wool, polyester, mixtures...)
 - Weave type (plain, twill, basket, satin...)
 - Weave direction (bias cut; warp vs. weft)
 - Seams (fashion design)
 - Hysteresis (ironed vs. crumpled in a suitcase)

From Ko, Choi [2002]

Challenges in cloth simulation

- Model
 - Complex microstructure
 - Realism
 - Simplicity
- Integrator
 - Dealing with stiffness
- Collision handling

Breen, House, Wozny [1994]

Vollino (sic), Courchesne, Magnenat-Thalmann [1998]

Outline

Overview

Models

• Integrating stiff systems

Collision handling

An (abbreviated) cloth bestiary

Cloth modeling basics

In general, cloth resists motion in 4 directions:

A basic mass-spring model

- Simple spring-mass system due to Provot [1995]
- You already know how to implement this

Early continuum models

 Various modifications to deal with collisions, etc.

Terzopolous, Platt, Barr, Fleischer [1987]

Carignan, Yang, Thalmann, Thalmann [1992]

Generally not used in practice (although many models use ideas from continuum physics)

Particle-based methods

Breen [1992]: energy-based model

$$U_i = U_{repel_i} + U_{stretch_i} + U_{bend_i} + U_{trellis_i}$$

- Find final draping position by minimizing the total energy in the cloth
 - NOT dynamic!

Note: You could convert this to a "normal" particle system model by differentiating energy w.r.t. position,

$$\mathbf{F} = -\nabla_{\mathbf{x}}U$$

Figure 3: Cloth model energy functions

Breen [1984]

- Tries to make the drape more realistic by measuring from reality
- Uses the Kawabata system
- Fit functions to the measured data

c) polyester/cotton

Kawabata plots for 3 different types
of fabric (Breen, House, Wozny [1994])

(aside) The Kawabata system

- A system for measuring the parameters of cloth
 - Stretch
 - Shear
 - Bend
 - Friction
- Developed by Kawabata [1984], used heavily in the textile engineering industry

From Virtual Clothing [Volino, Magnenat-Thalmann]

Breen [1984] (2)

100% Cotton Weave

100% Wool Weave

actual

Pront view

tton/Polvester Weav

Figure 6: Actual (left) vs. simulated (right) cloth drape

Baraff, Witkin [1998]

- A hybrid approach:
 - Energy-function-based (similar to Breen)
 - Sparse Jacobian
 - Linear forces for numerical reasons
 - Triangle-based
 - Energy functions defined over finite regions
 - But how do we determine stretch and shear on triangles (especially if we want to privilege warp and weft directions)?

Baraff, Witkin [1998] (2)

ullet Basic idea: treat the cloth as a 2-dimensional manifold embedded in \mathbb{R}^3

Note that this mapping only needs to be valid locally (useful for clothing)

Baraff, Witkin [1998] (3)

We are interested in the vectors \mathbf{w}_u and \mathbf{w}_v

If we pretend that w is locally linear, we get

$$\Delta \mathbf{x}_1 = \mathbf{w}_u \Delta u_1 + \mathbf{w}_v \Delta v_1$$

$$\Delta \mathbf{x}_2 = \mathbf{w}_u \Delta u_2 + \mathbf{w}_v \Delta v_2$$

Baraff, Witkin [1998] (4)

• Energy functions are defined in terms of a (heuristic) "soft" constraint function C(x), e.g.

Stretch:
$$\int_{0}^{\text{triangle area}} \int_{0}^{\text{rest length}} \mathbf{C}(\mathbf{x}) = a \begin{pmatrix} ||\mathbf{w}_{u}(\mathbf{x})|| - b_{u} \\ ||\mathbf{w}_{v}(\mathbf{x})|| - b_{v} \end{pmatrix}$$

Shear:

$$\mathbf{C}(\mathbf{x}) = a\mathbf{w}_u(\mathbf{x})^T \mathbf{w}_v(\mathbf{x})$$

Bend: angle between triangle faces
$$\mathbf{C}(\mathbf{x}) = heta$$

Now, energy and force are defined as

$$E_{\mathbf{c}}(\mathbf{x}) = \frac{k}{2} \mathbf{C}(\mathbf{x})^T \mathbf{C}(\mathbf{x})$$
 $\mathbf{f}(\mathbf{x}) = -\frac{\partial E_{\mathbf{C}}}{\partial \mathbf{x}}$

Baraff, Witkin [1998] (5)

- Damping forces turn out to be important both for realism and numerical stability
- Damping forces should
 - Act in direction of corresponding elastic force
- Be proportional to the velocity in that direction
 Hence, we derive (this should look familiar)

where

$$\mathbf{d} = -k_d \dot{\mathbf{C}}(\mathbf{x}) \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}}$$

$$\dot{\mathbf{C}}(\mathbf{x}) = \frac{\partial \mathbf{C}(\mathbf{x})}{\partial t} = \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial t}$$
Direction of force

Baraff, Witkin [1998] (6)

Figure 1 (top row): Cloth draping on cylinder; frames 8, 13 and 35. Figure 2 (second row): Sheet with two fixed particles; frames 10, 29 and 67. Figure 3 (third row): Shirt on twisting figure; frames 1, 24 and 46. Figure 4 (bottom row): Walking man; frames 30, 45 and 58.

Figure 5 (top row): Dancer with short skirt; frames 110, 136 and 155. Figure 6 (middle row): Dancer with long skirt; frames 185, 215 and 236. Figure 7 (bottom row): Closeups from figures 4 and 6.

Baraff, Witkin [1998] (7)

- Use by Alias | Wavefront in Maya Cloth
- Something similar used by Pixar

Ko, Choi [2002]

Basic problem: when we push on a piece of cloth like this,

we expect to see this:

But, in our basic particle system model, we have to make the compression forces very stiff to get significant out-of-plane motion. This is expensive.

Ko, Choi [2002] (2)

Ko, Choi use column buckling as their basic model.

Figure 3: Column Buckling

They replace bend and compression forces with a

single nonlinear model.

Ko, Choi [2002] (3)

Ko, Choi [2002] (4)

Ko, Choi [2002] (5)

Outline

Overview

Models

Integrating stiff systems

Collision handling

Stiffness in ODEs

Recall

"Loosely speaking, the initial value problem is referred to as being stiff if the absolute stability requirement dictates a much smaller time step than is needed to satisfy approximation requirements alone." (Ascher, Petzold [1997])

What does this mean?

Stiffness in ODEs -- example

Consider the following ODE:

$$\frac{dx}{dt} = -kx, \ k \gg 1$$

The analytical solution is

$$x(t) = Ce^{-kt}$$

If we solve it with Euler's method,

$$x_{t+h} = x_t - hkx_t = (1 - hk)x_t$$

What happens when $hk \gg 1$?

Barely stable

Unstable

Stiffness in cloth

- In general, cloth stretches little if at all in the plane
- To counter this, we generally have large in-plane stretch forces (otherwise the cloth looks "wiggly")
- The result: stiffness!

Implicit Euler

- The solution is to use *implicit methods* (Terzopolous et al. [1987], Baraff/Witkin [1998])
- Basic idea: express the derivatives at the current timestep in terms of the system state at the next timestep; e.g., backward Euler:

$$\mathbf{y}_{t+h} = \mathbf{y}_t + h\mathbf{f}(t+h, \mathbf{y}_{t+h})$$

We can apply this to our test equation,

$$x_{t+h} = x_t + h(-kx_{t+h})$$

$$x_{t+h}(1+hk) = x_t$$

$$x_{t+h} = \frac{x_t}{1+hk}$$

And, voila! For any hk > 0, |x| actually decreases as a function of time.

Implicit Euler (2)

The drawback is that if we look at our equation,

$$\mathbf{y}_{t+h} = \mathbf{y}_t + h\mathbf{f}(t+h, \mathbf{y}_{t+h})$$

 y_{t+h} appears on both sides of the equation -- hence the name "implicit."

Solution: rewrite it as

$$\mathbf{g}(\mathbf{y}_{t+h}) = \mathbf{y}_{t+h} - \mathbf{y}_t - h\mathbf{f}(t+h, \mathbf{y}_{t+h}) = \mathbf{0}$$

and use Newton's method.

Newton's method

For a nonlinear equation

$$g(x) = 0$$

with some initial guess x^0 , we can iterate: for a given iterate x^{ν} , we find the next by solving the linear equation

$$0 = g(x^{\nu}) + g'(x^{\nu})(x - x^{\nu})$$

Newton's method (2)

In m dimensions, this becomes

$$\mathbf{g}(\mathbf{x}) = \mathbf{0}$$
$$\mathbf{x}^{\nu+1} = \mathbf{x}^{\nu} - \left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}}(\mathbf{x}^{\nu})\right)^{-1} \mathbf{g}(\mathbf{x}^{\nu}), \ \nu = 0, 1, \dots$$

Or, rearranging to make it easier to solve,

$$\frac{\partial \mathbf{g}}{\partial \mathbf{x}}(\mathbf{x}^{\nu+1} - \mathbf{x}^{\nu}) = -\mathbf{g}(\mathbf{x}^{\nu}), \ \nu = 0, 1, \dots$$

We can use solve this with our favorite linear systems solver.

Implicit Euler (3)

Newton's method on the equation

$$\mathbf{g}(\mathbf{y}_{t+h}) = \mathbf{y}_{t+h} - \mathbf{y}_t - h\mathbf{f}(t+h, \mathbf{y}_{t+h}) = \mathbf{0}$$

results in the equation

$$\mathbf{y}_{t+h}^{\nu+1} = \mathbf{y}_{t+h}^{\nu} - \left(\frac{\partial \mathbf{g}}{\partial \mathbf{y}}\right)^{-1} \mathbf{g}(\mathbf{y}_{t+h}^{\nu})$$

or

$$\mathbf{y}_{t+h}^{\nu+1} = \mathbf{y}_{t+h}^{\nu} - \left(\mathbf{I} - h\frac{\partial \mathbf{f}}{\partial \mathbf{y}}\right)^{-1} \left(\mathbf{y}_{t+h}^{\nu} - \mathbf{y}_{t} - h\mathbf{f}(t+h, \mathbf{y}_{t+h}^{\nu})\right)$$

Rewriting as usual to eliminate the matrix inverse,

$$\left(\mathbf{I} - h \frac{\partial \mathbf{f}}{\partial \mathbf{y}}\right) \left(\mathbf{y}_{t+h}^{\nu+1} - \mathbf{y}_{t+h}^{\nu}\right) = -\mathbf{y}_{t+h}^{\nu} + \mathbf{y}_{t} + h \mathbf{f}(t+h, \mathbf{y}_{t+h}^{\nu})$$

With the initial guess $y_{t+h}^0 = y_t$, the first iteration is

$$\left(\mathbf{I} - h \frac{\partial \mathbf{f}}{\partial \mathbf{y}}\right) (\mathbf{y}_{t+h} - \mathbf{y}_t) = h \mathbf{f}(t+h, \mathbf{y}_t)$$

Implicit Euler in Baraff/Witkin

Recall that our differential equation for cloth is (in state-space formulation),

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}, \mathbf{v}) \end{bmatrix}$$

The implicit Euler method is

$$\begin{bmatrix} \mathbf{x}_{t+h} \\ \mathbf{v}_{t+h} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{v}_t \end{bmatrix} + h \begin{bmatrix} \mathbf{v}_{t+h} \\ \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+h}, \mathbf{v}_{t+h}) \end{bmatrix}$$

Take the first Newton iteration only (for speed):

$$\left(\mathbf{I} - h \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} & \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \end{bmatrix} \right) \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{bmatrix} = h \begin{bmatrix} \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f} (\mathbf{x}_t, \mathbf{v}_t) \end{bmatrix}$$

Baraff and Witkin reduce the dimensionality by back-substituting Δx into the equation for Δv

Implicit Euler in B/W (2)

The final equation they solve is

$$\left(\mathbf{I} - h\mathbf{M}^{-1}\frac{\partial \mathbf{f}}{\partial \mathbf{v}} - h^2\mathbf{M}^{-1}\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\Delta\mathbf{v} = h\mathbf{M}^{-1}\left(\mathbf{f}_0 + h\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\mathbf{v}_0\right)$$
$$\left(\mathbf{M} - h\frac{\partial \mathbf{f}}{\partial \mathbf{v}} - h^2\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\Delta\mathbf{v} = h\left(\mathbf{f}_0 + h\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\mathbf{v}_0\right)$$

Assuming a reasonable force model, this is (almost) symmetric and positive definite, so it can be solved using conjugate gradient.

Conjugate Gradient in B/W

In many cases, we would actually like certain masses to be ∞ , e.g., for constraints.

In this case, the matrix M⁻¹ is rank deficient, multiplying by M is meaningless

Solution: use the "unconstrained" M matrix in PCG --but after every iteration project back onto the
constraint manifold.

For details, consult Baraff and Witkin [1998]. Also:

Ascher, U. and Boxerman, E. "On the modified conjugate gradient method in cloth simulation." http://www.cs.ubc.ca/spider/ascher/papers/ab.pdf

Higher-order implicit methods

Implicit Euler has only first-order accuracy

More recently, people have been using 2nd-order backward differences (Ko/Choi [2002], Bridson et al [2002]).

- Multistep
- 2nd order accuracy

Avoiding stiffness

An alternative approach is to avoid stiffness altogether by applying only non-stiff spring forces and then "fixing" the solution at the end of the timestep. (Provot [1995], Desbrun et al [1999], Bridson et al [2002])

We can do this with impulses and Jacobi iteration.

Avoiding stiffness (2)

Popular for interactive applications

- Justification
 - Biphasic spring model

Plausible dynamics

Outline

Overview

Models

• Integrating stiff systems

Collisions with rigid objects

Current best practice: use implicit surfaces

Collisions with rigid objects (2)

$$\mathbf{f}(\mathbf{x}) \propto \nabla g(\mathbf{x})$$

$$g(\mathbf{x}) > 0$$

Collisions with rigid objects (3)

See also [Bridson, Marino, Fedkiw 2003]

Self-collisions

• First problem: detection

Self-collisions: detection

 Solution: store curvature information in the bounding volume hierarchy ([Volino and Magnenat-Thalmann 1994] [Provot 1997])

Which way is "out"?

Solution I: algorithmically infer orientation

Locally [Volino, Courchesne, Magnenat-Thalmann 1995]

Solution I: algorithmically infer orientation

Globally [Baraff, Witkin 2003]

- Solution 2: assume everything starts consistent, never allow anything to pass through
 - but how?

Collision detection

 Generally need to do triangle-triangle collision checks:

Robust collision detection

If triangles are moving too fast, they may pass through each other in a single timestep.

We can prevent this by checking for *any* collisions during the timestep (Provot [1997])

Note first that both point-face and edge-edge collisions occur when the appropriate 4 points are coplanar

Robust collision detection (2)

Detecting time of coplanarity - assume linear velocity throughout timestep:

So the problem reduces to finding roots of the cubic equation

$$((\mathbf{x}_{12} + t\mathbf{v}_{12}) \times (\mathbf{x}_{13} + t\mathbf{v}_{13})) \cdot (\mathbf{x}_{14} + t\mathbf{v}_{14})$$

Once we have these roots, we can plug back in and test for triangle adjacency.

Collision response

- 4 basic options:
 - Constraint-based
 - Penalty forces
 - Impulse-based
 - Rigid body dynamics (will explain)

Constraint-based response

- Assume totally inelastic collision
- Constrain particle to lie on triangle surface
- Benefits:
 - Fast, may not add stiffness (e.g., Baraff/Witkin)
 - No extra damping needed
- Drawbacks
 - Only supports point-face collisions
 - Constraint attachment, release add discontinuities (constants hard to get right)
 - Doesn't handle self-collisions (generally)
- Conclusion: a good place to start, but not robust enough for heavy-duty work

Constraint-based response (4)

- Must keep track of constraint forces in the simulator -- that is, the force the simulator is applying to maintain the constraint
- If constraint force opposes surface normal, need to release particle

Penalty forces

Apply a spring force that keeps particles away from each other

Benefits:

- Easy to fit into an existing simulator
- Works with all kinds of collisions (use barycentric coordinates to distribute responses among vertices)

Drawbacks:

 Hard to tune: if force is too weak, it will sometimes fail; if force is too strong, it will cause the particles to "float" and "wiggle"

Penalty forces (2)

- In general, penalty forces are not inelastic (springs store energy)
- Can be made less elastic by limiting force when particles are moving away
- Some kind of additional damping may be needed to control deformation rate along surface

Impulses

• "Instantaneous" change in momentum

$$\mathbf{J} = \int_{t_i}^{t_f} \mathbf{F} \, dt = \mathbf{p}_f - \mathbf{p}_i$$

- Generally applied outside the simulator timestep (similar to strain limiting)
- Benefits
 - Correctly stops all collisions (no sloppy spring forces)
- Drawbacks
 - Can have poor numerical performance
 - Handles persistent contact poorly

Impulses (2)

Iteration is generally necessary to remove all collisions.

Convergence may be slow in some cases.

Rigid collision impact zones

of mass

- Basic idea: if a group of particles start timestep collision-free, and move as a rigid body throughout the timestep, then they will end timestep collisionfree.
- We can group particles involved in a collision together and move them as a rigid body (Provot [1997] -- error?, Bridson [2002])

$$x_{CM} = \frac{\sum_{i} m_{i} \mathbf{x}_{i}}{m_{i}} \qquad v_{CM} = \frac{\sum_{i} m_{i} \mathbf{v}_{i}}{m_{i}} \qquad \qquad \text{Center of mass frame}$$

$$\mathbf{L} = \sum_{i} m_{i} (\mathbf{x}_{i} - \mathbf{x}_{CM}) \times (\mathbf{v}_{i} - \mathbf{v}_{CM}) \qquad \qquad \text{Momentum}$$

$$\mathbf{I} = \sum_{i} m \left(|\mathbf{x}_{i} - \mathbf{x}_{CM}|^{2} \delta - (\mathbf{x}_{i} - \mathbf{x}_{CM}) \otimes (\mathbf{x}_{i} - \mathbf{x}_{CM}) \right) \qquad \text{Inertia tensor}$$

$$\omega = \mathbf{I}^{-1} \mathbf{L} \qquad \qquad \text{Angular velocity}$$

$$\mathbf{v}_{i} = \mathbf{v}_{CM} + \omega \times (\mathbf{x}_{i} - \mathbf{x}_{CM}) \qquad \qquad \text{Final velocity}$$

Rigid collision impact zones (2)

- Note that this is totally failsafe
- We will need to iterate, and merge impact zones as we do (e.g. until the impact zone includes all colliding particles)
- This is best used as a last resort, because rigid body cloth can be unappealing.

Combining methods

- So we have:
 - penalty forces not robust, not intrusive (i.e., integrates with solver)
 - impulses robust (esp. with iteration), intrusive but may not converge
 - rigid impact zones completely robust, guaranteed convergence, but very intrusive

Solution? Use all three! (Bridson et al [2002])

Combining methods (2)

Basic methodology (Bridson et al [2002]):

- I. Apply penalty forces (implicitly)
- 2. While there are collisions left
 - I. Check robustly for collisions
 - 2. Apply impulses
- 3. After several iterations of this, start grouping particles into rigid impact zones

4.

Objective: guaranteed convergence with minimal interference with cloth internal dynamics

Bridson et al. [2002]

Bridson et al. [2002]

Bridson 2003 (?)

Summary

Overview

Models

• Integrating stiff systems

Collision handling