Defending Computer Networks
Lecture 4: Exploit Defenses

Stuart Staniford
Adjunct Professor of Computer Science

Logistics

Course is now official

Expect an email from Stephanie Meik with
your PIN

Need to enroll by tomorrow (Weds 9/11)

If you didn’t sign list in class, or talk to
Stephanie
— Go talk to her to ensure you get a PIN number

More Logistics

e Let’s add a week to homework 1 —
— now due Weds 9/18 @ 5pm
— Just now have a TA candidate
— Still dealing with very basic issues in lab
— Corollary: my office hrs tomorrow will be normal
1:30-3pm
 Can we use Ubuntu in VM on laptop for hw?

— Yes, but you’re on your own for platform specific
Issues.

N.S.A. Foils Much Internet Encryption

By NICOLE PERLROTH, JEFF LARSON and SCOTT SHANE
Published: September 5, 2013 | @ 352 Comments

The National Security Agency is winning its long-running secret war
on encryption, using supercomputers, technical trickery, court orders
and behind-the-scenes persuasion to undermine the major tools

Latest News

How to remain secure against NSA
surveillance

[Ed FAceEBOOK

The NSA has huge capabilities — and if it wants in to your
computer, it's in. With that in mind, here are five ways to stay safe

W TWITTER

34 GOOGLE+

protecting the privacy of everyday communications in the Internet

age, according to newly disclosed documents.

i, Enlarge This Image

Associated Press
This undated photo released by the
United States government shows the
National Security Agency campus in
Fort Meade, Md.

This story has been reported in
partnership among The New York
Times, The Guardian and
ProPublica based on documents
obtained by The Guardian. For The
Guardian: James Ball, Julian
Borger, Glenn Greenwald. For The
New York Times: Nicole Perlroth,
Scott Shane. For ProPublica: Jeff
Larson.

£3 sAve
B E-MAL
The agency has circumvented or
) SHARE
cracked much of the encryption, or
digital scrambling, that guards global =~ = PRINT
commerce and banking systems, [® REPRINTS

protects sensitive data like trade -
secrets and medical records, and Enough Said
tomatically secures the e-mails Coming Soon
auto y ’ Watch Trailer »
Web searches, Internet chats and

phone calls of Americans and others

around the world, the documents show.

Many users assume — or have been assured by Internet
companies — that their data is safe from prying eyes,
including those of the government, and the N.S.A. wants to
keep it that way. The agency treats its recent successes in
deciphering protected information as among its most
closely guarded secrets, restricted to those cleared for a
highly classified program code-named Bullrun, according
to the documents, provided by Edward J. Snowden, the
former N.S.A. contractor.

Bruce Schneier
theguardian.com, Thursday 5 September 2013 15.06 EDT

=1 liimn tA ~ammante (1NR)

Now that we have enough details about how the NSA eavesdrops on the
internet, including today's disclosures of the NSA's deliberate weakening
of cryptographic systems, we can finally start to figure out how to protect
ourselves.

For the past two weeks, | have been working with the Guardian on NSA

stories, and have read hundreds of top-secret NSA documents provided
by whistleblower Edward Snowden. | wasn't part of today's story — it was
in process well before | showed up — but everything | read confirms what
the Guardian is reporting.

At this point, | feel | can provide some advice for keeping secure against
such an adversary.

The primary way the NSA eavesdrops on internet communications is in
the network. That's where their capabilities best scale. They have
invested in enormous programs to automatically collect and analyze
network traffic. Anything that requires them to attack individual endpoint
computers is significantly more costly and risky for them, and they will do
those things carefully and sparingly.

Leveraging its secret agreements with telecommunications companies —
all the US and UK ones, and many other "partners" around the world —
the NSA gets access to the communications trunks that move internet
traffic. In cases where it doesn't have that sort of friendly access, it does
its best to surreptitiously monitor communications channels: tapping
undersea cables, intercepting satellite communications, and so on.

More...

(TS//SUINF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly
influence and/or overtly leverage their commercial products® designs. These design changes make the systems
in question exploitable through SIGINT collection (e.g., Endpoint, MidPoint, etc.) with foreknowledge of the
modification. To the consumer and other adversaries, however, the systems' security remains intact. In this
way, the SIGINT Enabling approach uses commercial technology and insight to manage the increasing cost and
technical challenges of discovering and successfully exploiting systems of interest within the ever-more integrated
and security-focused global communications environment.

(TS/SU/REL TO USA, FVEY) This Project supports the Comprehensive National Cybersecurity
Initiative (CNCI) by investing in corporate partnerships and providing new access to intelligence sources,
reducing collection and exploitation costs of existing sources’, and enabling expanded network operation and
intelligence exploitation to support network defense and cyber situational awareness. This Project contains the
SIGINT Enabling Sub-Project.

(U) Base resources in this project are used to:

* (TS/SI/REL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

* (TS/SI//REL TO USA, FVEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

* (TS/SI//RELTO USA,FVEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

* (TS/SI//REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

* (TS/SI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

* (TS/SI//REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

http://www.theguardian.com/world/interactive/2013/sep/05/sigint-nsa-collaborates-technology-companies

And more...

C.3. (TS//SI//REL) The fact that TOP SECRET/S1/
NSA/CSS has some capabilities REL TO USA, FVEY
against the encryption in at a minimum
TLS/SSL, HTTPS, SSH, VPNs,
VolP, WEBMAIL, and other See Remarks.,
network communication
technologics
C.6. (TS//SV/REL TO USA, TOP SECRET/SV/

FVEY) The fact that NSA/CSS REL TO USA, FVEY
develops implants to enable a
capability against the encryption See Remarks.
used in network communication
technologies

http://www.theguardian.com/world/interactive/2013/sep/05/
nsa-project-bullrun-classification-guide

And still more...

Privacy Scandal: NSA Can Spy on Smart Phone Data

SPIEGEL has learned from internal NSA documents that the US intelligence agency has the capability of
tapping user data from the iPhone, devices using Android as well as BlackBerry, a system previously

believed to be highly secure.

" September 07, 2013 - 06:00 PM

-

Print | Send

| Feedback

30 Tweet < 3,783 FiRecommend - 2.4k g +1

?NSA Spying Scandal

P National Security Agency

P Apple

Related SPIEGEL ONLINE links

'Success Story': NSA Targeted French Foreign
Ministry (09/01/2013)

Snowden Document: NSA Spied On Al Jazeera
Communications (08/31/2013)

REUTERS

German Chancellor Angela Merkel holds a BlackBerry Z10 smart phone: Will the
company face a setback following claims the NSA can spy on its phones?

The United States' National Security Agency intelligence-gathering
operation is capable of accessing user data from smart phones from all
leading manufacturers. Top secret NSA documents that SPIEGEL has
seen explicitly note that the NSA can tap into such information on Apple
iPhones, BlackBerry devices and Google's Android mobile operating
system.

Main Goals for Today

Heap/BSS Overflows and Vulnerabilities
— Just a little taste

Understand NX defenses against overflows
— And sketch return oriented programming

Understand Address Space Randomization
— And how the dark side can work around it
Discussion today probably a little sketchier

— Want to point to various issues
— But need to move on to other topics

Refresher: Canaries

Top of Memory

LS

Buffer[64] contains shellcode i large_string_

Saved Frame Pointer

Top of Stack

Stack Pointer %esp Frame Pointer %ebp

Not invincible. Eg http://phrack.org/issues.html?issue=56&id=5

Heap/BSS Overflows

* Heap is app dynamically allocated memory
— malloc/new
* BSS is segment for static/global variables.

* Code vulnerabilities are conceptually similar
to in stack case, but with heap/bss variables

char* foo = (char*)malloc(64);
if(foo)
strcpy(foo, user)

Simple BSS example

int main(int argc, char **argv)
{
FILE *tmpfd;
static char buf[BUFSIZE], *tmpfile;
tmpfile = "/tmp/vulprog.tmp";
printf("Enter one line of data to put in %s: ", tmpfile);
gets(buf);
tmpfd = fopen(tmpfile, "w");
fputs(buf, tmpfd);
fclose(tmpfd);

Adapted from http://netsec.cs.northwestern.edu/media/readings/heap_overflows.pdf

Simple heap example

struct myObject
{

char name[64];
int (*foo)(int);

Note that in C++, virtual functions are stored implicitly in
object structure as function pointers

Use After Free()

CWE-416: Use After Free

Use After Free

Weakness ID: 416 (Weakness Base) Status: Draft
Vv Description

Description Summary

Referencing memory after it has been freed can cause a program to crash,
use unexpected values, or execute code.

Extended Description

The use of previously-freed memory can have any number of adverse
consequences, ranging from the corruption of valid data to the execution of
arbitrary code, depending on the instantiation and timing of the flaw. The
simplest way data corruption may occur involves the system's reuse of the
freed memory. Use-after-free errors have two common and sometimes
overlapping causes:

e Error conditions and other exceptional circumstances.

« Confusion over which part of the program is responsible for freeing
the memory.

In this scenario, the memory in question is allocated to another pointer
validly at some point after it has been freed. The original pointer to the
freed memory is used again and points to somewhere within the new
allocation. As the data is changed, it corrupts the validly used memory; this
induces undefined behavior in the process.

If the newly allocated data chances to hold a class, in C++ for example,
various function pointers may be scattered within the heap data. If one of
these function pointers is overwritten with an address to valid shellcode,
execution of arbitrary code can be achieved.

Heap Issues in General

e Often exploitable

* Not nearly as cookie-cutter as stack issues

* Requires more code-analysis from the
attacker

— Each case is different

NX/DEP/W"X

* Related mechanisms with common theme
— Let’s not execute the stack/heap
— That way, cannot inject shellcode into buffer
— And then point RIP at buffer contents

— Ditto in format string attack, cannot put shellcode
into buffer

* Requires hardware/OS support
— But we have that now

NX/DEP/W"X

Top of Memory

Processor won’t execute

Buffer[64] contains shellcode sFpp oW LS large_string_

Ret ptr

€ Saved Frame Pointer
Top of Stack

Stack Pointer %esp Frame Pointer %ebp

NX Bit

* General term for hardware feature
— Originally AMD term
— XD Bit (Intel)
— XN Bit (ARM)
* Implemented in the page table
— Bit 63 says this page cannot be executed

— Hardware will enforce when doing memory lookup on
instruction pointers in virtual address space

— OS needs to manage the bits on the pages
* Make sure stack and heap pages cannot execute

DEP: Data Execution Prevention

e Term for the OS Level feature

e Particularly on MS Windows
— Controllable on a process-by-process basis
— First optionally available on XP SP2 (circa 2004)
— Default is still only to be available on core OS stuff

— Optionally turn on for everything
* Breaks some applications

WAX

Write XOR Execute
Extended version of idea
All virtual pages can be

— either writeable or executable
— But not both

Prevents self-modifying code
OpenBSD, OS X, some Linux have full WAX

Defeating NX: Return to LIBC

We can’t make RIP point to our code

But we can make it point to any pre-existing
code on system

— In text segment, so executable

And we can set up stack beforehand
Eg call system();

So NX not invincible by itself

ROP: Return Oriented Programming

Generalization of return-to-libc idea
Shacham, 2007

ldea is to crawl libc (etc), and find a series of
“gadgets”

A gadget is a useful bit of code right before
the ret instruction of some function

Might just be one or two instructions

Libc from a ROP POV

Function G R Function Function G R Func G'R

Func G R Function Function

Etc, etc...

More ROP

* Then call a bunch of these in sequence
— from the (scribbled on) stack

* Shachem showed that libc ROP gadgets form a

general purpose computation framework that
can do anything.

* Very hard to fix this by surgery on libc

NOP Sleds

When we overwrite an address in memory
— Say aRIP

We need to know what value to put.
Simple case:
— Beginning of shellcode in buffer

But this is fragile.

— Any slight difference in code version,
— Even if it didn’t affect the vulnerability
— Could change the jump address

So allow for some imprecision

Instead of

Shellcode

Jump exactly here

Do

NOP NOP NOP NOP NOP NOP Shellcode

On x86, 0x90 is a single byte op-code

to do nothing. Simplest NOP sled.
Jump somewhere in here. Now our exploit is less

fragile. Assuming we have the space.

Address Space Layout Randomization

Basic insight is to make it really hard to figure out what address to jump to. Put key parts
of the program in random places in memory

Instead of loading program into memory the same way every time:

Text Stack Heap

Randomize:

Stack Heap

Heap Heap

Heap Stack Heap

So Now

e When we overwrite RIP, we don’t know where
to point, not even close

— If we could get close, could use a NOP-sled

ASLR

Now available on all major OS’s

Not all legacy code is compiled this way
— May not be position-independent

But increasingly becoming standard

So a fully modern exploit must get past

— Canaries
— NX/DEP
— ASLR

All at the same time...
But let’s look at ASLR in isolation for a moment

Brute Forcing ASLR

* Loading at run time, we can’t do fine-grained
randomization

— Code, for example, has all kinds of internal jumps
that must be known, so code can’t easily be
jumbled up at the micro scale.

e Limited to moving around big chunks (stack,
text, etc)
— Consider an 8MB stack in 4GB (32 bit machine)
— 512 possible positions. Not outrageous to guess
— Much more difficult on 64 bit machines

Leaking Addresses

* Anything that allows us to see an address,

— lets us get a handle on where that kind of thing
lives

— Eg format string vulnerability allows us to inspect
the stack before doing our attack
* We can quickly figure out where everything lives
— Text pointers in RIPs

— Stack pointers in stack frame bases
— Heap pointers in local variable pointers to heap buffers

00000000

00000000°
00000000°
00000000°
00000000°
00000000°
00000000°
00000000°
00000000°
00000000°
00000000°
00000000°

Defeating ALSR/DEP combined

* Any non-ALSR code can be analyzed for ROP.

— Still sometimes libraries/code lying around. Eg

* https://blogs.technet.com/b/srd/archive/2013/08/12/
mitigating-the-ldrhotpatchroutine-dep-aslr-bypass-
with-ms13-063.aspx

The bypass takes advantage of a predictable memory region known as SharedUserData that exists at a fixed location
(Ox7ffe0000) in every process on every supported version of Windows. On 64-bit versions of Windows prior to Windows 8,
this region contains pointers to multiple functions in the 32-bit version of NTDLL that is used by WOWG64 processes as
shown below:

7ffe0340
7ffe0344
7ffe0348
7ffel34c
7f£e0350
7f£fe0354
7f£fe=0358
7ffe03Sc
7ffe0360
7ffel364
7ffe0368
7ffel36c

0:000> dds 7ffe0340 Lc

77829ce9
77800100
77800028
778000b8
7788£8d4
77822551
7782251b
77822553
77800190
77892dfd
77851749
777€£0000

ntdll32!LdrInitializeThunk
ntdll32!KiUserExceptionDispatcher
ntdll32!KiUserApcDispatcher
ntdll32!KiUsexrCallbackDispatcher
ntdll32!LdrHotPatchRoutine
ntdll32!ExpInterlockedPopEntrySListFault
ntdll32!ExpInterlockedPopEntrySListResune
ntdll32!/ExpIinterlockedPopEntrySListEnd
ntdll32!'RtlUserThreadStart
ntdll32!'RtlpQueryProcessDebuginformationRemote
ntdll32!/EtwpNotificationThread
ntdll32!CsxrServeriApiRoutine

Defeating ALSR/DEP

* Getting harder — Microsoft will pay $100k for
any new methods of doing it on Windows

— http://www.microsoft.com/security/msrc/report/
bypass_bounty.aspx

Bottom Line: Defenses Help

But not a panacea yet:

8000

7000

(2]
o
o
o

5000

4000

3000

Count of Vulnerabilities Reported to CVE List

N
o
o
o

1000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Problem Still Not Fully Solved

Microsoft » Windows 8 : Vulnerability Statistics

Vulnerabilities (38) CVSS Scores Report Browse all versions

Possible matches for this product

Related Metasploit Modules

Related OVAL Definitions : Vulnerabilities (38) Patches (0)

Inventory Definitions (2)

Compliance Definitions (0)

Vulnerability Feeds & Widgets

Vulnerability Trends Over Time

Year Vulnel::;ilities DoS Ex::)::on Overflow Crri?:t?(’)n Inj:::ion Xss 'I::ras/::,sre:ll

2012 5 3 2

2013 33 10 9 10 3 1

Total 38 10 12 12 3 1
% Of All 26.3 31.6 31.6 7.9 0.0 0.0 2.6

H
ttp Bypass Gain Gain

Response | mething Information Privileges

Splitting
2
1 1 13
1 1 1
0.0 2.6 2.6 44.7

CSRF

0.0

File

of

Inclusion exploits

0.0

NN

Warning : Vulnerabilities with publish dates before 1999 are not included in this table and chart. (Because there are not many of them and they make
the page look bad; and they may not be actually published in those years.)

Vulnerabilities By Year Vulnerabilities By Type
33 M 20125
2013 33

17
12 12
10
5 3
L B
[|

M Execute Code 12
Overflow 12

™ Gain Privilege 17

M Denial of Service 10

[| Memory Corruption 3

[| Directory Traversal 1
Bypass Something 1
Gain Information 1

http://www.cvedetails.com/product/22318/Microsoft-Windows-8.html

