Defending Computer Networks
Lecture 15: HTTP & NIDS

Stuart Staniford
Adjunct Professor of Computer Science

Logistics

* HW3.
— Due tonight.

Assigned Reading

* Rain Forest Puppy. A Look at Whisker’s Anti-
IDS Tactics. http://www.ussrback.com/docs/
papers/IDS/whiskerids.html

Latest News

Malware infected IAEA computers, but no data
was compromised: UN

Reuters, October 22, 2013

Malicious software infected some U.N. nuclear agency computers in recent months but no data in its
network is believed to have been compromised, the agency said in a confidential note to member
states.

The U.N.'s International Atomic Energy Agency (IAEA) plays a key role in global efforts to prevent the
spread of nuclear weapons.

Among other politically sensitive tasks, it is investigating Iran's disputed atomic activities.

The IAEA, in a brief note distributed on Monday evening and seen by Reuters on Tuesday, said an
internal investigation had concluded that during past months some computers operated by the
agency were infected by malware.

The computers were located in common areas of the agency's Vienna headquarters, known as the
Vienna International Centre (VIC), it said.

"Data from some VIC visitors' USB drives is believed to have been compromised, including during the
September 2013 Board of Governors meeting and General Conference," it said, referring to two
meetings of IAEA member states during that month.

"The Secretariat does not believe that the USB devices themselves were infected or that they could
spread the malware further," the U.N. agency added. "The investigation indicates that no data from
the IAEA network has been compromised."

Main Goals for Today

* Introduce basics of HTTP
e NIDS in Context of HTTP Server Attacks

HTTP 1.1

Main protocol that web runs over
By far most important protocol on Internet

RFC 2616 (1999)
— Obsoletes RFC 1945 for HTTP 1.0

— HTTP originally dates back to Tim Berners Lee/
CERT in 1991 (v 0.9)

Text based request/response protocol
— Originally primarily to identify/download files
— Also provides for web applications

Protocol Layering

 HTTP runs over TCP

e InHTTP 1.1, one TCP connection can have a
series of HTTP requests
— Reverse direction carries responses

* NB: connection structure is not that meaningful
to HTTP

— Different browser may use one or multiple TCP
connections
* And spread requests between them differently.
— Proxies can rearrange requests/responses to different
connections.

HTTP Request

GET /dumprequest HTTP/1.1\r\n

Host: djce.org.uk\r\n

Connection: keep-alive\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;9=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36\r\n

DNT: 1\r\n

Referer: https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD4QFjAC&url=http%3A%2F
%2Fdjce.org.uk
%2Fdumprequest&ei=835|UpjEM5Xb4APEgIGoDA&uUsg=AFQjCNEeAn5wSZMp_y oTmOK
ong482sS9A&sig2=pSajtDK-YYIVE4AHFDgmRfA&bvm=bv.54934254,d.dmg\r\n
Accept-Language: en-US,en;q=0.8\r\n

\r\n

Try it at http://djce.org.uk/dumprequest

HTTP Header Basics

Text lines separated by \r\n
Header is terminated by a blank line (\r\n\r\n)

Initial request line

— GET /dumprequest HTTP/1.1\r\n

 Other methods include POST, CONNECT, HEAD, DELETE, etc.
* Focus on GET for now

Followed by headers of form
— Header: Value..\r\n
— No request headers are actually required

Let’s try it

* Telnet to www.google.com 80 and try a
manually entered request for
nosuchpage.html

A Few Popular Request Headers

Host:
— Used to specify domain (server might have several).

User-Agent:

— Gives browser specifics (allows server to customize
responses to browser)

Referer:

— What page (etc) sent us here
Accept-Language:

— We speak English, or...

Accept:
— media formats we accept (eg text/html)

HTTP Response

HTTP/1.1 404 Not Found\r\n

Content-Type: text/html; charset=UTF-8\r\n
X-Content-Type-Options: nosniff\r\n

Date: Mon, 21 Oct 2013 19:37:20 GMT\r\n
Server: sffe\r\n

Content-Length: 946\r\n

X-XSS-Protection: 1; mode=block\r\n
Alternate-Protocol: 80:quic\r\n

\r\n

<IDOCTYPE html>

HTTP Response Basics

Text lines separated by \r\n
Header is terminated by a blank line (\r\n\r\n)

Initial response line
— HTTP/1.1 404 Not Found\r\n

* Indicates status of request.

Followed by headers of form
— Header: Value...\r\n

— No response headers are actually required
* Though hard to get much done without them...

Important Response Codes

200 OK

301 Moved Permanently
304 Not Modified

400 Bad Request

404 Not Found

500 Internal Server Error

A Few Popular Response Headers

Content-Type:
— Media-type of entity attached after header

Content-Length:
— Length of same (in bytes)

Content-encoding:
— ‘gzip” means compression applied

Date:
Server: software being run on the server

Entity Body

 Follows header

— either request or response, but more consistently
in response direction
— Can be any media type:
* text/html, text/plain, image/jpeg, audio/mpeg
e http://www.iana.org/assienments/media-types
— Three methods to delineate length:

* Content-length
* Transfer-encoding: chunked

 Connection: close

Detecting Attacks on Web Servers

Has been a major industry for 15+ years
Exploits on the servers themselves
Exploits on cgi scripts,

— other server-side plugins

SQL Injection

Cross-site scripting

Also HTTP command-and-control

— Similar issues of detecting bad HTTP requests

Top Snort Rule Files

Stuarts-MacBook-Pro:rules stuartsS du -s -k *.rules |sort -n
-r |head -10

6152 deleted.rules

1216 browser-plugins.rules
792 malware-cnc.rules
688 blacklist.rules

568 server-webapp.rules
392 file-identify.rules

348 file-office.rules

344 server-other.rules
328 pua-adware.rules
316 browser-ie.rules

Snort Example 4

alert tcp SHOME_NET any -> SEXTERNAL_NET
SHTTP_PORTS (msg:"MALWARE-CNC Win.Trojan.Zbot
variant in.php outbound connection”,;
flow:to_server,established; urilen:7; content:"/in.php";
http _uri; content:".ru|0D OA|User-Agent|3A 20| Mozilla/
4.0|0D OA|"; fast_pattern:only; http_header; content:" |
OA|Content-Length|3A 20|"; http_header;
metadata:policy balanced-ips drop, policy security-ips
drop, ruleset community, service http;
reference:url,zeustracker.abuse.ch/monitor.php?
ipaddress=195.22.26.231; classtype:trojan-activity; sid:
26023; rev:3;)

Snort Example 5

alert tcp SEXTERNAL_NET any -> SHOME_NET
SHTTP_PORTS (msg:"SERVER-WEBAPP D-Link DIR-300/
DIR-600 unauthenticated remote command execution
attempt”; flow:to_server,established; content:"POST";
depth:4; nocase; http_method; content:"/command.php";
fast_pattern:only; http_uri; content:"cmd="; nocase;
http_client_body; metadata:policy balanced-ips drop,
policy security-ips drop, service http; reference:bugtraq,
57734; reference:url,exploit-db.com/exploits/24453/;
reference:url,osvdb.org/show/osvdb/89861;
reference:url,www.s3curlty.de/mladv2013-003;
classtype:attempted-admin; sid:26953; rev:1;)

nsvnn Search OS

89861 : D-Link Multiple Router command.php cmd Parameter Remote Command Execution

Views This Week

VDB Browse Vendors Project Info Help OSVDB! Sponsors Account

Printer | http://osvdb.org/89861 | Email This | Edit Vulnerability

Views All Time Added to OSVDB Last Modified Modified (since 2008) Percent Complete

18

574 9 months ago about 1 month ago 14 times 100%

Timeline

‘Time to Exploit H Time to Vendor Response ‘
| 52days || 7 days |

Description

Multiple D-Link routers contain a flaw that is triggered when input passed via the ‘cmd' parameter is not properly sanitized before being used in
the command. php script. This may allow a remote attacker to execute arbitrary commands.

Classification

Location: Remote / Network Access

Attack Type: Input Manipulation

Impact: Loss of Integrity

Solution: Solution Unknown

Exploit: Exploit Public

Disclosure: Vendor Disputed, Third-party Verified
OSVDB: Web Related

OSVDB is not currently aware of a solution for this vulnerability.

Products

2.12b02

D-Link Corporation/D- DIR-300 2.13b01

i 2.14b01
Link Systems, Inc. s
DIR-600 2'13

5 Minute Break

HTTP Level Evasions

« HTTP is a very complex protocol

— Many important sub-protocols/formats
* URIs
* Character sets
* Media types of entities

* As aresult
— Hard to inspect
— Very evasion prone
— Extensive work required in IDS to deal with issues

e We will start to work on URI issues...

Obscure HTTP Methods

e “HEAD” instead of “GET".
e RFC 2616:

94 HEAD

The HEAD method is identical to GET except that the server MUST NOT return a message-
body in the response. The metainformation contained in the HTTP headers in response to a
HEAD request SHOULD be identical to the information sent in response to a GET request. This
method can be used for obtaining metainformation about the entity implied by the request without
transferring the entity-body itself. This method is often used for testing hypertext links for validity,
accessibility, and recent modification.

Pipelining of Requests

* |f IDS doesn’t properly reassemble TCP and
parse protocol:

GET foo.html HTTP/1.2\r\n\r\nGET bar.htm| HTTP/1.1\r\n\r\n

e Could miss the “bar.html”

 Have seen commercial products with this issue
recently...

Directory Type Evasions

* Suppose IDS looking for “/servlet/
command.php” in URL

* So attackers might try:
— /servlet//command.php
— /servlet///command.php
— /servlet/./command.php
— /servilet/././command.php
— /servlet/subdir/../command.php

e On Windows based web servers:
— /servlet\command.php

URL Encoding

* RFC 2396 specifies URL format:

2.4.1. Escaped Encoding

An escaped octet is encoded as a character triplet, consisting of the
percent character "%" followed by the two hexadecimal digits
representing the octet code. For example, "%$20" is the escaped
encoding for the US-ASCII space character.

escaped = "%" hex hex
hex -— digit | IIAII | lan I llcll I lan I llEn I an I
" an | ubn | "C " | udn | uen | " f "

* And RFC 2616 says:

The Request-URI is transmitted in the format specified in section 3.2.1. If the Request-URI is encoded using
the "% HEX HEX" encoding [42], the origin server MUST decode the Request-URI in order to properly
interpret the request. Servers SHOULD respond to invalid Request-URIs with an appropriate status code.

e So IDS must do the same...

Double Percent Encoding

%25 is ‘%’ in ASCII

%41 is ‘A’

So if you write %2541 and decode once
— you get %41

Decode again

— you get ‘A’

Unbelievably, IIS did this...

— IDS must follow...

Double Nibble Hex Encoding

* %%34%31

* On first decoding goes to %41

* On second decoding goes to A

e Again, Microsoft |IS supported this encoding
* Also variations like %341 and %4%31

e Also get correctly transformed to A

— Not a current issue by default

Loose Implementations

* RFC says:
— Method <space> URI <space> HTTP/ Version CRLF CRLF

 But some Apache versions allow
— Method <tab> URI <tab> HTTP/ Version CRLF CRLF

* |IDS must follow implementations exactly, or
attacker can fool

Case Insensitivity of Windows

* /SerVLeT/ComMaNd.Php

 May well work fine if underlying OS is case
Insensitive

* |IDS must match behavior of target

