Gossip and Self-Stabilization

Lonnie Princehouse

CS 5412

February 28, 2012

Gossip Protocols

Gossip is the family of protocols loosely
characterized by
» Randomized peer selection
> Probabilistic convergence
» Round-based execution

> Not “reactive”’: messages only
sent on a timer, not in response
to stimuli

> Predictable network load
(good!) / high latency (bad!)

» Robust fault tolerance

AKA Epidemic Protocols

» Starting with an initial infected
node

AKA Epidemic Protocols

» Starting with an initial infected
node

> Select a random neighbor

AKA Epidemic Protocols

» Starting with an initial infected
node

> Select a random neighbor

> Neighbor becomes infected

AKA Epidemic Protocols

v

Starting with an initial infected
node

v

Select a random neighbor

v

Neighbor becomes infected

> Repeat

AKA Epidemic Protocols

v

Starting with an initial infected
node

v

Select a random neighbor

v

Neighbor becomes infected

> Repeat

AKA Epidemic Protocols

v

Starting with an initial infected
node

v

Select a random neighbor

v

Neighbor becomes infected

> Repeat

‘)

(

AKA Epidemic Protocols

v

Starting with an initial infected
node

v

Select a random neighbor

v

Neighbor becomes infected

> Repeat

AKA Epidemic Protocols

v

Starting with an initial infected
node

v

Select a random neighbor
> Neighbor becomes infected
> Repeat

Intuition behind fault-tolerance:
Randomized peer selection makes it
difficult to design gossip protocols that
rely on a “critical path” of nodes

Simple Epidemic

v

Assume a fixed population of size n

v

Assume homogeneous spreading
> Complete graph: Anyone can infect anyone with equal probability

> Assume k members already infected

v

Infection occurs in rounds

Probability of Infection

> Probability Pinfect(k, n) that a particular uninfected member is infected in a
round if k are already infected

Pintect(k,n) = 1 — P(nobody infects members)
= 1-(1-1/n)*

> E(# newly infected members) = (n — k) X Pinrect(k, n)

Rate of Simple Epidemic

> Infection
> Initial growth factor very high
> Exponential growth
» Number of rounds necessary to
infect the entire population is
O(logn)
> For large n, Pinfect(n/2,n) =
1—(1/e)1/2) ~ 0.4

Source: Ashish Motivala 2002

Expected #rounds

expeciod 1 rounds

] 1
#participants

1000

Expected # of Rounds vs. Participants

[log scale]

Gossip Applications

What are the commmon gossip
applications?

» Rumor-Mongering

> Broadcast and multicast
> Sensor networks
> Every node has a local sensor
reading; the system records or
aggregates these remote
readings
> Data center monitoring

> Anti-Entropy

> Eventual consistency for sets of
versioned objects

» Overlay maintenance and crash
failure detection

> E.g., “heartbeat” protocols

¢

¢...When an unauthorized movement is
detected, an alert is sent to the base
station which sends warning messages to

the security office or whomever is
responsible for that area. The security

system relies on networks of cars
constantly gossiping with their neighbors

sing the concealed wireless nodes. The
cars raise the alarm when a thief tries

to make a getaway...’’

Anti-Entropy [Demers et. al '87]

Keeping a distributed database in sync
with anti-entropy:
» Distributed database storing
versioned objects
» Updates are (key, value, version)
triplets
> Broadcast update using gossip
> Nodes update their stores when

they receive an update with a
newer version of a stored object

Overlay Maintenance

v

Network overlays critical for many high performance distributed systems

Must be maintained in the presence of churn: node arrival, departure, and
failure

v

> Gossip's high latency often makes it a poor fit for the applications running
on top of the overlay

> ... but ideally suited as a foundation for continually adjusting the overlay
according to churn, due to its fault tolerance

-

after 5 cycles after 8 cycles after 15 cycles

er 3 cycles
Fig. 2. Illustrative example of constructing a torus over 50 x 50 = 2500 nodes, starting
from a uniform random topology with ¢ = 20. For clarity, only the nearest 4 neighbors
(out of 20) of each node are displayed.

T-Man [Jelasity et. all builds overlays according to custom biased weighting functions for neighbor preference.

This shows a toroidal overlay as it converges.

Scaling Gossip

A Convenient Assumption

"“Gossip with a random node, chosen from all nodes in the system”

> On the scale of P2P internet systems, or even large cloud computing
datacenters, constant churn makes it impractical for every node to be
aware of all other currently participating nodes.

> Instead, typically a node will know only about its view — those nodes
adjacent to it in the communication graph.

> Generally, the view size is fixed or at most log(n)

Can we approximate truly uniform peer selection with only a subset of global
membership?

Scaling Gossip

A Convenient Assumption

"“Gossip with a random node, chosen from all nodes in the system”

> On the scale of P2P internet systems, or even large cloud computing
datacenters, constant churn makes it impractical for every node to be
aware of all other currently participating nodes.

> Instead, typically a node will know only about its view — those nodes
adjacent to it in the communication graph.

> Generally, the view size is fixed or at most log(n)

Can we approximate truly uniform peer selection with only a subset of global
membership? Yes. No. Maybe. (depends on the application)

Peer Sampling [Kermarrec et. all

Random walk sampling

>

Instead of choosing a neighbor
directly, send out a random walk
probe

When the probe stops, its current
location is the sampled peer
Discrete Time Random Walk
> Probes take a predetermined
number of steps
Continuous Time Random Walk

> Probes flip a coin to decide if
they should stop or keep going

> Coin may be weighted, possibly
even by properties of the current
location, e.g., node degree

Can be used for general sampling
of any sensor data; not just
view-building

Self-Stabilizing Protocols

“[Distributed sytems] have been designed, but all such designs | was familiar
with were not “self-stabilizing” in the sense that, when once (erroneously) in
an illegitimate state, they could — and usually did!- remain so forever.”

» — Edsger Dijkstra proposed several self-stabilizing distributed systems in
1974

» (This was mostly ignored)

> Until 1983, when Leslie Lamport delivered a distributed computing
keynote address concerning self-stabilization

Transient Faults in Distributed Systems

Transient Faults

Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state

How can we handle transient faults?

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?

> ...and leave our system in a perpetually broken state?!

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?
> ...and leave our system in a perpetually broken state?!

» Detect and repair?

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?
> ...and leave our system in a perpetually broken state?!

» Detect and repair?

> Harder than it sounds! (see next slide)

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?
> ...and leave our system in a perpetually broken state?!

» Detect and repair?

> Harder than it sounds! (see next slide)

» Design our systems to gracefully tolerate them

Transient Faults in Distributed Systems

Transient Faults
Category of faults that affect the system only temporarily. After a transient
fault, system is left with an arbitrary initial state
How can we handle transient faults?
> Ignore?
> ...and leave our system in a perpetually broken state?!

» Detect and repair?

> Harder than it sounds! (see next slide)

» Design our systems to gracefully tolerate them

> Self-stabilizing systems are always moving towards a correct state
> System isn't “aware” of faults, but repairs damage nonetheless

The Trouble with Error Detection

» Using only local knowledge—a node and its immediate neighbors—we may
not be able to detect faulty global state

» Trying to track properties of global state in a distributed system is
impractical
> Does not scale

Self-Stabilizing System: Definition

Define a set of legitimate system states. The two defining properties of a
self-stabilizing system are:

Convergence
Starting from an arbitrary initial state, the system eventually reaches a
legitimate state.

Self-Stabilizing System: Definition

Define a set of legitimate system states. The two defining properties of a
self-stabilizing system are:

Convergence

Starting from an arbitrary initial state, the system eventually reaches a
legitimate state. Worst-case convergence time O(n?) rounds

Closure
Once in a legitimate state, the system remains in a legitimate state in the
absence of faults.

Example: Dijkstra’s Token Ring Mutual Exclusion

» N + 1 processes labeled 0, ..., N

> processes are arranged in a ring,
such that each node i can only see
its predecessor i — 1 mod N

» Each process i has a counter C; in
the range {0,..., K} for K > N+1
» For each process i, define a
boolean function
privilege,(Ci—1,)
> Goal: privilege; true for only one
process at a time, and it rotates
around the ring
> Legitimate states: privilege; true
for exactly one process i

> Legal executions: Privilege moves
in the ring from process i/ to its
successor (i + 1) mod K

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Execution

Process 0

if Co = Cy then Gy < (C[) + 1) mod K

All other processes

if G 75 Ci_1 then G+ G

Example: Dijkstra’s Token Ring Mutual Exclusion

Convergence
Does it converge from an arbitrary initial state, in the absence of faults?

Example: Dijkstra’s Token Ring Mutual Exclusion

Convergence
Does it converge from an arbitrary initial state, in the absence of faults?

» Yes. Eventually, Gy will increment to a value not contained in the
arbitrary initial state. This value will be copied all around the ring, at
which point we reach a legitimate state with process 0 holding the token.

Example: Dijkstra’s Token Ring Mutual Exclusion

Convergence
Does it converge from an arbitrary initial state, in the absence of faults?
» Yes. Eventually, Gy will increment to a value not contained in the

arbitrary initial state. This value will be copied all around the ring, at
which point we reach a legitimate state with process 0 holding the token.

Closure

Is it impossible to reach an illegimate state from a legitimate state in the
absence of faults?

Example: Dijkstra’s Token Ring Mutual Exclusion

Convergence
Does it converge from an arbitrary initial state, in the absence of faults?

» Yes. Eventually, Gy will increment to a value not contained in the
arbitrary initial state. This value will be copied all around the ring, at
which point we reach a legitimate state with process 0 holding the token.

Closure

Is it impossible to reach an illegimate state from a legitimate state in the
absence of faults?

> V Yes. Execution always moves the token one step forward on the ring.

Further Self-Stabilization

> Dijkstra's 1974 paper offered two more self-stabilizing examples

» He speculated that there is no uniform solution, i.e., there is no
distinguished process like process 0 in the example

> Actually, it's possible for rings of prime size [Burns-Pachl]

Self-Stabilizing Layers

We can layer self-stabilizing protocols. If protocol P,'s convergence is
predicated on Pi, running them both together results in a composite
self-stabilizing protocol.

Leader election to choose root

node

Layer 2 Construct spanning tree overlay

Count nodes in subtrees

Assigns labels to nodes in

depth first search order

Self-Stabilizing Layers

Worst-case time to converge is the sum of each layer's convergence time, but
average convergence time is much better

4 flux=rate of state
v change (nodes/round)
= 2
0 Correlated merge yields
9% fewer messages
0 200 400 ° 9
round
Leader Count
4 [3
% A 52
& 2 ¥ I"J \ = 1
0 \ [N}
0 200 400 200 400
round round
Tree Label
3
>§ 2 o ! .y
&] Z 05 LA
0 0
0 200 400 200 400
round round

End

Questions?

End

Questions?

Quiz

