
CS5412:

TRANSACTIONS (I)

Ken Birman

CS5412 Spring 2012 (Cloud Computing: Birman) 1

Lecture XVII

Transactions

 A widely used reliability technology, despite the

BASE methodology we use in the first tier

 Goal for this week: in-depth examination of topic

 How transactional systems really work

 Implementation considerations

 Limitations and performance challenges

 Scalability of transactional systems

 Topic will span two lectures

Transactions

 There are several perspectives on how to achieve

reliability

 We’ve talked at some length about non-transactional

replication via multicast

 Another approach focuses on reliability of

communication channels and leaves application-

oriented issues to the client or server – “stateless”

 But many systems focus on the data managed by a

system. This yields transactional applications

Transactions on a single database:

 In a client/server architecture,

 A transaction is an execution of a single program of

the application(client) at the server.

 Seen at the server as a series of reads and writes.

 We want this setup to work when

 There are multiple simultaneous client transactions

running at the server.

 Client/Server could fail at any time.

The ACID Properties

 Atomicity

 All or nothing.

 Consistency:

 Each transaction, if executed by itself, maintains the
correctness of the database.

 Isolation (Serializability)

 Transactions won’t see partially completed results of other
non-commited transactions

 Durability

 Once a transaction commits, future transactions see its results

Transactions in the real world

 In cs5142 lectures, transactions are treated at the
same level as other techniques

 But in the real world, transactions represent a huge
chunk (in $ value) of the existing market for
distributed systems!

 The web is gradually starting to shift the balance (not
by reducing the size of the transaction market but by
growing so fast that it is catching up)

 But even on the web, we use transactions when we buy
products

The transactional model

 Applications are coded in a stylized way:
 begin transaction

 Perform a series of read, update operations

 Terminate by commit or abort.

 Terminology

 The application is the transaction manager

 The data manager is presented with operations from
concurrently active transactions

 It schedules them in an interleaved but serializable
order

A side remark

 Each transaction is built up incrementally

 Application runs

 And as it runs, it issues operations

 The data manager sees them one by one

 But often we talk as if we knew the whole thing at

one time

 We’re careful to do this in ways that make sense

 In any case, we usually don’t need to say anything until

a “commit” is issued

Transaction and Data Managers

Transactions

read

update

read

update

transactions are stateful: transaction “knows” about database contents and

updates

Data (and Lock) Managers

Typical transactional program

begin transaction;

 x = read(“x-values”,);

 y = read(“y-values”,);

 z = x+y;

 write(“z-values”, z,);

commit transaction;

What about locks?

 Unlike some other kinds of distributed systems,
transactional systems typically lock the data they
access

 They obtain these locks as they run:

 Before accessing “x” get a lock on “x”

 Usually we assume that the application knows enough
to get the right kind of lock. It is not good to get a
read lock if you’ll later need to update the object

 In clever applications, one lock will often cover
many objects

Locking rule

 Suppose that transaction T will access object x.

 We need to know that first, T gets a lock that “covers” x

 What does coverage entail?

 We need to know that if any other transaction T’ tries to

access x it will attempt to get the same lock

Examples of lock coverage

 We could have one lock per object

 … or one lock for the whole database

 … or one lock for a category of objects

 In a tree, we could have one lock for the whole tree
associated with the root

 In a table we could have one lock for row, or one for
each column, or one for the whole table

 All transactions must use the same rules!

 And if you will update the object, the lock must be
a “write” lock, not a “read” lock

Transactional Execution Log

 As the transaction runs, it creates a history of its

actions. Suppose we were to write down the

sequence of operations it performs.

 Data manager does this, one by one

 This yields a “schedule”

 Operations and order they executed

 Can infer order in which transactions ran

 Scheduling is called “concurrency control”

Observations

 Program runs “by itself”, doesn’t talk to others

 All the work is done in one program, in straight-line

fashion. If an application requires running several

programs, like a C compilation, it would run as

several separate transactions!

 The persistent data is maintained in files or

database relations external to the application

Serializability

 Means that effect of the interleaved execution is

indistinguishable from some possible serial execution

of the committed transactions

 For example: T1 and T2 are interleaved but it

“looks like” T2 ran before T1

 Idea is that transactions can be coded to be correct

if run in isolation, and yet will run correctly when

executed concurrently (and hence gain a speedup)

Need for serializable execution

Data manager interleaves operations to improve concurrency

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2

 T1: R1(X) R1(Y) W1(X) commit1

 T2: R2(X) W2(X) W2(Y) commit2

Non serializable execution

Problem: transactions may “interfere”. Here, T2 changes x, hence T1 should have

either run first (read and write) or after (reading the changed value).

Unsafe! Not serializable

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1

 T1: R1(X) R1(Y) W1(X) commit1

 T2: R2(X) W2(X) W2(Y) commit2

Serializable execution

Data manager interleaves operations to improve concurrency but schedules them so that

it looks as if one transaction ran at a time. This schedule “looks” like T2 ran first.

 DB: R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1

 T1: R1(X) R1(Y) W1(X) commit1

 T2: R2(X) W2(X) W2(Y) commit2

Atomicity considerations

 If application (“transaction manager”) crashes, treat

as an abort

 If data manager crashes, abort any non-committed

transactions, but committed state is persistent

 Aborted transactions leave no effect, either in

database itself or in terms of indirect side-effects

 Only need to consider committed operations in

determining serializability

Components of transactional system

 Runtime environment: responsible for assigning

transaction id’s and labeling each operation with

the correct id.

 Concurrency control subsystem: responsible for

scheduling operations so that outcome will be

serializable

 Data manager: responsible for implementing the

database storage and retrieval functions

Transactions at a “single” database

 Normally use 2-phase locking or timestamps for

concurrency control

 Intentions list tracks “intended updates” for each

active transaction

 Write-ahead log used to ensure all-or-nothing

aspect of commit operations

 Can achieve thousands of transactions per second

Strict two-phase locking: how it works

 Transaction must have a lock on each data item it

will access.

 Gets a “write lock” if it will (ever) update the item

 Use “read lock” if it will (only) read the item. Can’t

change its mind!

 Obtains all the locks it needs while it runs and hold

onto them even if no longer needed

 Releases locks only after making commit/abort

decision and only after updates are persistent

Why do we call it “Strict” two phase?

 2-phase locking: Locks only acquired during the

‘growing’ phase, only released during the ‘shrinking’

phase.

 Strict: Locks are only released after the commit

decision

 Read locks don’t conflict with each other (hence T’ can

read x even if T holds a read lock on x)

 Update locks conflict with everything (are “exclusive”)

Strict Two-phase Locking

T1: begin read(x) read(y) write(x) commit

T2: begin read(x) write(x) write(y) commit

Acquires locks
Releases locks

Notes

 Notice that locks must be kept even if the same

objects won’t be revisited

 This can be a problem in long-running applications!

 Also becomes an issue in systems that crash and then

recover

 Often, they “forget” locks when this happens

 Called “broken locks”. We say that a crash may “break”

current locks…

Why does strict 2PL imply serializability?

 Suppose that T’ will perform an operation that

conflicts with an operation that T has done:

 T’ will update data item X that T read or updated

 T updated item Y and T’ will read or update it

 T must have had a lock on X/Y that conflicts with the

lock that T’ wants

 T won’t release it until it commits or aborts

 So T’ will wait until T commits or aborts

Acyclic conflict graph implies serializability

 Can represent conflicts between operations and

between locks by a graph (e.g. first T1 reads x and

then T2 writes x)

 If this graph is acyclic, can easily show that

transactions are serializable

 Two-phase locking produces acyclic conflict graphs

Two-phase locking is “pessimistic”

 Acts to prevent non-serializable schedules from

arising: pessimistically assumes conflicts are fairly

likely

 Can deadlock, e.g. T1 reads x then writes y; T2

reads y then writes x. This doesn’t always deadlock

but it is capable of deadlocking

 Overcome by aborting if we wait for too long,

 Or by designing transactions to obtain locks in a known

and agreed upon ordering

Contrast: Timestamped approach

 Using a fine-grained clock, assign a “time” to each

transaction, uniquely. E.g. T1 is at time 1, T2 is at

time 2

 Now data manager tracks temporal history of each

data item, responds to requests as if they had

occured at time given by timestamp

 At commit stage, make sure that commit is consistent

with serializability and, if not, abort

Example of when we abort

 T1 runs, updates x, setting to 3

 T2 runs concurrently but has a larger timestamp. It

reads x=3

 T1 eventually aborts

 ... T2 must abort too, since it read a value of x that

is no longer a committed value

 Called a cascaded abort since abort of T1 triggers

abort of T2

Pros and cons of approaches

 Locking scheme works best when conflicts between

transactions are common and transactions are short-

running

 Timestamped scheme works best when conflicts are

rare and transactions are relatively long-running

 Weihl has suggested hybrid approaches but these

are not common in real systems

Intentions list concept

 Idea is to separate persistent state of database

from the updates that have been done but have yet

to commit

 Intensions list may simply be the in-memory cached

database state

 Say that transactions intends to commit these

updates, if indeed it commits

Role of write-ahead log

 Used to save either old or new state of database to

either permit abort by rollback (need old state) or

to ensure that commit is all-or-nothing (by being

able to repeat updates until all are completed)

 Rule is that log must be written before database is

modified

 After commit record is persistently stored and all

updates are done, can erase log contents

Structure of a transactional system

application

cache (volatile) lock records

updates (persistent)

 database
log

Recovery?

 Transactional data manager reboots

 It rescans the log

 Ignores non-committed transactions

 Reapplies any updates

 These must be “idempotent”

 Can be repeated many times with exactly the same effect as a
single time

 E.g. x := 3, but not x := x.prev+1

 Then clears log records

 (In normal use, log records are deleted once transaction
commits)

Transactions in distributed systems

 Notice that client and data manager might not run on

same computer

 Both may not fail at same time

 Also, either could timeout waiting for the other in normal

situations

 When this happens, we normally abort the transaction

 Exception is a timeout that occurs while commit is being

processed

 If server fails, one effect of crash is to break locks even for

read-only access

Transactions in distributed systems

 What if data is on multiple servers?

 In a non-distributed system, transactions run against a

single database system

 Indeed, many systems structured to use just a single

operation – a “one shot” transaction!

 In distributed systems may want one application to talk

to multiple databases

Transactions in distributed systems

 Main issue that arises is that now we can have
multiple database servers that are touched by one
transaction

 Reasons?

 Data spread around: each owns subset

 Could have replicated some data object on multiple
servers, e.g. to load-balance read access for large
client set

 Might do this for high availability

 Solve using 2-phase commit protocol!

Unilateral abort

 Any data manager can unilaterally abort a

transaction until it has said “prepared”

 Useful if transaction manager seems to have failed

 Also arises if data manager crashes and restarts

(hence will have lost any non-persistent intended

updates and locks)

 Implication: even a data manager where only reads

were done must participate in 2PC protocol!

Transactions on distributed objects

 Idea was proposed by Liskov’s Argus group and

then became popular again recently

 Each object translates an abstract set of operations

into the concrete operations that implement it

 Result is that object invocations may “nest”:

 Library “update” operations, do

 A series of file read and write operations that do

 A series of accesses to the disk device

Nested transactions

 Call the traditional style of flat transaction a “top

level” transaction

 Argus short hand: “actions”

 The main program becomes the top level action

 Within it objects run as nested actions

Arguments for nested transactions

 It makes sense to treat each object invocation as a
small transaction: begin when the invocation is done,
and commit or abort when result is returned

 Can use abort as a “tool”: try something; if it doesn’t
work just do an abort to back out of it.

 Turns out we can easily extend transactional model to
accommodate nested transactions

 Liskov argues that in this approach we have a
simple conceptual framework for distributed
computing

Nested transactions: picture

T1: fetch(“ken”) set_salary(“ken”, 100000) ... commit

open_file ... seek... read seek... write...

... lower level operations...

Observations

 Can number operations using the obvious notation

 T1, T1.2.1.....

 Subtransaction commit should make results visible to

the parent transaction

 Subtransaction abort should return to state when

subtransaction (not parent) was initiated

 Data managers maintain a stack of data versions

Stacking rule

 Abstractly, when subtransaction starts, we push a

new copy of each data item on top of the stack for

that item

 When subtransaction aborts we pop the stack

 When subtransaction commits we pop two items and

push top one back on again

 In practice, can implement this much more

efficiently!!!

Data objects viewed as “stacks”

• Transaction T0 wrote 6 into x

• Transaction T1 spawned subtransactions that

wrote new values for y and z

x y z

17

6

1

13

-2

18

30

15

T0

T1.1.1

T1.1 T1.1

T1.1.1

Locking rules?

 When subtransaction requests lock, it should be

able to obtain locks held by its parent

 Subtransaction aborts, locks return to “prior state”

 Subtransaction commits, locks retained by parent

 ... Moss has shown that this extended version of 2-

phase locking guarantees serializability of nested

transactions

Summary

CS5412 Spring 2012 (Cloud Computing: Birman)

49

 Transactional model lets us deal with large

databases or other large data stores

 Provides a model for achieving high concurrency

 Concurrent transactions won’t stumble over one-

another because ACID model offers efficient ways

to achieve required guarantees

