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Transactions 

 A widely used reliability technology, despite the 

BASE methodology we use in the first tier 

 Goal for this week: in-depth examination of topic 

 How transactional systems really work 

 Implementation considerations 

 Limitations and performance challenges 

 Scalability of transactional systems 

 Topic will span two lectures 



Transactions 

 There are several perspectives on how to achieve 

reliability 

 We’ve talked at some length about non-transactional 

replication via multicast 

 Another approach focuses on reliability of 

communication channels and leaves application-

oriented issues to the client or server – “stateless” 

 But many systems focus on the data managed by a 

system.  This yields transactional applications 



Transactions on a single database: 

 In a client/server architecture, 

 A transaction is an execution of a single program of 

the application(client) at the server. 

 Seen at the server as a series of reads and writes. 

 We want this setup to work when 

 There are multiple simultaneous client transactions 

running at the server. 

 Client/Server could fail at any time. 



The ACID Properties 

 Atomicity 

 All or nothing. 

 Consistency:  

 Each transaction, if executed by itself, maintains the 
correctness of the database. 

 Isolation (Serializability) 

 Transactions won’t see partially completed results of other 
non-commited transactions 

 Durability 

 Once a transaction commits, future transactions see its results 



Transactions in the real world 

 In cs5142 lectures, transactions are treated at the 
same level as other techniques 

 But in the real world, transactions represent a huge 
chunk (in $ value) of the existing market for 
distributed systems! 

 The web is gradually starting to shift the balance (not 
by reducing the size of the transaction market but by 
growing so fast that it is catching up) 

 But even on the web, we use transactions when we buy 
products 



The transactional model 

 Applications are coded in a stylized way: 
 begin transaction 

 Perform a series of read, update operations 

 Terminate by commit or abort.   

 Terminology 

 The application is the transaction manager 

 The data manager is presented with operations from 
concurrently active transactions 

 It schedules them in an interleaved but serializable 
order 



A side remark 

 Each transaction is built up incrementally 

 Application runs 

 And as it runs, it issues operations 

 The data manager sees them one by one 

 But often we talk as if we knew the whole thing at 

one time 

 We’re careful to do this in ways that make sense 

 In any case, we usually don’t need to say anything until 

a “commit” is issued 



Transaction and Data Managers 

Transactions 

read 

update 

read 

update 

transactions are stateful: transaction “knows” about database contents and 

updates 

Data (and Lock) Managers 



Typical transactional program 

begin transaction; 

     x = read(“x-values”, ....); 

     y = read(“y-values”, ....); 

     z = x+y; 

     write(“z-values”, z, ....); 

commit transaction; 



What about locks? 

 Unlike some other kinds of distributed systems, 
transactional systems typically lock the data they 
access 

 They obtain these locks as they run: 

 Before accessing “x” get a lock on “x” 

 Usually we assume that the application knows enough 
to get the right kind of lock.  It is not good to get a 
read lock if you’ll later need to update the object 

 In clever applications, one lock will often cover 
many objects 



Locking rule 

 Suppose that transaction T will access object x. 

 We need to know that first, T gets a lock that “covers” x 

 What does coverage entail? 

 We need to know that if any other transaction T’ tries to 

access x it will attempt to get the same lock 



Examples of lock coverage 

 We could have one lock per object 

 … or one lock for the whole database 

 … or one lock for a category of objects  

 In a tree, we could have one lock for the whole tree 
associated with the root 

 In a table we could have one lock for row, or one for 
each column, or one for the whole table 

 All transactions must use the same rules! 

 And if you will update the object, the lock must be 
a “write” lock, not a “read” lock 



Transactional Execution Log 

 As the transaction runs, it creates a history of its 

actions.  Suppose we were to write down the 

sequence of operations it performs. 

 Data manager does this, one by one 

 This yields a “schedule”  

 Operations and order they executed 

 Can infer order in which transactions ran 

 Scheduling is called “concurrency control” 



Observations 

 Program runs “by itself”, doesn’t talk to others 

 All the work is done in one program, in straight-line 

fashion.  If an application requires running several 

programs, like a C compilation, it would run as 

several separate transactions! 

 The persistent data is maintained in files or 

database relations external to the application 



Serializability 

 Means that effect of the interleaved execution is 

indistinguishable from some possible serial execution 

of the committed transactions 

 For example: T1 and T2 are interleaved but it 

“looks like” T2  ran before T1 

 Idea is that transactions can be coded to be correct 

if run in isolation, and yet will run correctly when 

executed concurrently (and hence gain a speedup) 



Need for serializable execution 

Data manager interleaves operations to improve concurrency 

 DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2 

 T1:     R1(X)  R1(Y)  W1(X) commit1 

 T2:     R2(X) W2(X) W2(Y)  commit2 



Non serializable execution 

Problem: transactions may “interfere”.  Here, T2  changes x, hence T1 should have 

either run first (read and write) or after (reading the changed value).   

Unsafe!  Not serializable 

 DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1 

 T1:     R1(X)  R1(Y)  W1(X) commit1 

 T2:     R2(X) W2(X) W2(Y)  commit2 



Serializable execution 

Data manager interleaves operations to improve concurrency but schedules them so that 

it looks as if one transaction ran at a time.  This schedule “looks” like T2 ran first. 

 DB:     R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1 

 T1:     R1(X)  R1(Y)  W1(X) commit1 

 T2:     R2(X) W2(X) W2(Y)  commit2 



Atomicity considerations 

 If application (“transaction manager”) crashes, treat 

as an abort 

 If data manager crashes, abort any non-committed 

transactions, but committed state is persistent  

 Aborted transactions leave no effect, either in 

database itself or in terms of indirect side-effects 

 Only need to consider committed operations in 

determining serializability 



Components of transactional system 

 Runtime environment: responsible for assigning 

transaction id’s and labeling each operation with 

the correct id. 

 Concurrency control subsystem: responsible for 

scheduling operations so that outcome will be 

serializable 

 Data manager: responsible for implementing the 

database storage and retrieval functions 



Transactions at a “single” database 

 Normally use 2-phase locking or timestamps for 

concurrency control 

 Intentions list tracks “intended updates” for each 

active transaction 

 Write-ahead log used to ensure all-or-nothing 

aspect of commit operations 

 Can achieve thousands of transactions per second 



Strict two-phase locking: how it works 

 Transaction must have a lock on each data item it 

will access.   

 Gets a “write lock” if it will (ever) update the item 

 Use “read lock” if it will (only) read the item.  Can’t 

change its mind! 

 Obtains all the locks it needs while it runs and hold 

onto them even if no longer needed 

 Releases locks only after making commit/abort 

decision and only after updates are persistent 



Why do we call it “Strict” two phase? 

 2-phase locking: Locks only acquired during the 

‘growing’ phase, only released during the ‘shrinking’ 

phase. 

 Strict: Locks are only released after the commit 

decision 

 Read locks don’t conflict with each other (hence T’ can 

read x even if T holds a read lock on x) 

 Update locks conflict with everything (are “exclusive”) 



Strict Two-phase Locking 

T1:     begin    read(x)    read(y)      write(x)    commit 

T2:     begin    read(x)    write(x)     write(y)    commit 

Acquires locks 
Releases locks 



Notes 

 Notice that locks must be kept even if the same 

objects won’t be revisited  

 This can be a problem in long-running applications! 

 Also becomes an issue in systems that crash and then 

recover 

 Often, they “forget” locks when this happens 

 Called “broken locks”.  We say that a crash may “break” 

current locks… 



Why does strict 2PL imply serializability? 

 Suppose that T’ will perform an operation that 

conflicts with an operation that T has done: 

 T’ will update data item X that T read or updated 

 T updated item Y and T’ will read or update it 

 T must have had a lock on X/Y that conflicts with the 

lock that T’ wants 

 T won’t release it until it commits or aborts 

 So T’ will wait until T commits or aborts 



Acyclic conflict graph implies serializability 

 Can represent conflicts between operations and 

between locks by a graph (e.g. first T1 reads x and 

then T2 writes x) 

 If this graph is acyclic, can easily show that 

transactions are serializable 

 Two-phase locking produces acyclic conflict graphs 



Two-phase locking is “pessimistic” 

 Acts to prevent non-serializable schedules from 

arising: pessimistically assumes conflicts are fairly 

likely 

 Can deadlock, e.g. T1 reads x then writes y; T2 

reads y then writes x.  This doesn’t always deadlock 

but it is capable of deadlocking 

 Overcome by aborting if we wait for too long,  

 Or by designing transactions to obtain locks in a known 

and agreed upon ordering 



Contrast: Timestamped approach 

 Using a fine-grained clock, assign a “time” to each 

transaction, uniquely.  E.g. T1 is at time 1, T2 is at 

time 2 

 Now data manager tracks temporal history of each 

data item, responds to requests as if they had 

occured at time given by timestamp 

 At commit stage, make sure that commit is consistent 

with serializability and, if not, abort 



Example of when we abort 

 T1 runs, updates x, setting to 3 

 T2 runs concurrently but has a larger timestamp.  It 

reads x=3  

 T1 eventually aborts 

 ... T2 must abort too, since it read a value of x that 

is no longer a committed value 

 Called a cascaded abort since abort of T1 triggers 

abort of T2 



Pros and cons of approaches 

 Locking scheme works best when conflicts between 

transactions are common and transactions are short-

running 

 Timestamped scheme works best when conflicts are 

rare and transactions are relatively long-running 

 Weihl has suggested hybrid approaches but these 

are not common in real systems 



Intentions list concept 

 Idea is to separate persistent state of database 

from the updates that have been done but have yet 

to commit 

 Intensions list may simply be the in-memory cached 

database state 

 Say that transactions intends to commit these 

updates, if indeed it commits 



Role of write-ahead log 

 Used to save either old or new state of database to 

either permit abort by rollback (need old state) or 

to ensure that commit is all-or-nothing (by being 

able to repeat updates until all are completed) 

 Rule is that log must be written before database is 

modified 

 After commit record is persistently stored and all 

updates are done, can erase log contents 



Structure of a transactional system 

application 

cache (volatile)                  lock records 

updates (persistent) 

  database 
log 



Recovery? 

 Transactional data manager reboots 

 It rescans the log 

 Ignores non-committed transactions 

 Reapplies any updates 

 These must be “idempotent” 

 Can be repeated many times with exactly the same effect as a 
single time 

 E.g. x := 3, but not x := x.prev+1 

 Then clears log records  

 (In normal use, log records are deleted once transaction 
commits)  

 



Transactions in distributed systems 

 Notice that client and data manager might not run on 

same computer 

 Both may not fail at same time 

 Also, either could timeout waiting for the other in normal 

situations 

 When this happens, we normally abort the transaction 

 Exception is a timeout that occurs while commit is being 

processed  

 If server fails, one effect of crash is to break locks even for 

read-only access 



Transactions in distributed systems 

 What if data is on multiple servers? 

 In a non-distributed system, transactions run against a 

single database system 

 Indeed, many systems structured to use just a single 

operation – a “one shot” transaction! 

 In distributed systems may want one application to talk 

to multiple databases 



Transactions in distributed systems 

 Main issue that arises is that now we can have 
multiple database servers that are touched by one 
transaction 

 Reasons? 

 Data spread around: each owns subset 

 Could have replicated some data object on multiple 
servers, e.g. to load-balance read access for large 
client set 

 Might do this for high availability 

 Solve using 2-phase commit protocol! 



Unilateral abort 

 Any data manager can unilaterally abort a 

transaction until it has said “prepared” 

 Useful if transaction manager seems to have failed 

 Also arises if data manager crashes and restarts 

(hence will have lost any non-persistent intended 

updates and locks) 

 Implication: even a data manager where only reads 

were done must participate in 2PC protocol! 



Transactions on distributed objects 

 Idea was proposed by Liskov’s Argus group and 

then became popular again recently 

 Each object translates an abstract set of operations 

into the concrete operations that implement it 

 Result is that object invocations may “nest”: 

 Library “update” operations, do 

 A series of file read and write operations that do 

 A series of accesses to the disk device 



Nested transactions 

 Call the traditional style of flat transaction a “top 

level” transaction 

 Argus short hand: “actions” 

 The main program becomes the top level action 

 Within it objects run as nested actions 



Arguments for nested transactions 

 It makes sense to treat each object invocation as a 
small transaction: begin when the invocation is done, 
and commit or abort when result is returned 

 Can use abort as a “tool”: try something; if it doesn’t 
work just do an abort to back out of it. 

 Turns out we can easily extend transactional model to 
accommodate nested transactions 

 Liskov argues that in this approach we have a 
simple conceptual framework for distributed 
computing 



Nested transactions: picture 

T1:  fetch(“ken”) .... set_salary(“ken”, 100000) ... commit 

open_file ... seek... read     seek... write... 

... lower level operations... 



Observations 

 Can number operations using the obvious notation 

 T1, T1.2.1..... 

 Subtransaction commit should make results visible to 

the parent transaction 

 Subtransaction abort should return to state when 

subtransaction (not parent) was initiated 

 Data managers maintain a stack of data versions 



Stacking rule 

 Abstractly, when subtransaction starts, we push a 

new copy of each data item on top of the stack for 

that item 

 When subtransaction aborts we pop the stack 

 When subtransaction commits we pop two items and 

push top one back on again 

 In practice, can implement this much more 

efficiently!!! 



Data objects viewed as “stacks” 

• Transaction T0 wrote 6 into x 

•  Transaction T1 spawned subtransactions that 

wrote new values for y and z 

 

x                                      y                                      z 

17 

6 

1 

13 

-2 

18 

30 

15 

T0 

T1.1.1 

T1.1 T1.1 

T1.1.1 



Locking rules? 

 When subtransaction requests lock, it should be 

able to obtain locks held by its parent 

 Subtransaction aborts, locks return to “prior state” 

 Subtransaction commits, locks retained by parent 

 ... Moss has shown that this extended version of 2-

phase locking guarantees serializability of nested 

transactions 



Summary 
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 Transactional model lets us deal with large 

databases or other large data stores 

 

 Provides a model for achieving high concurrency 

 

 Concurrent transactions won’t stumble over one-

another because ACID model offers efficient ways 

to achieve required guarantees 


