
CS5412:

HOW DURABLE SHOULD IT BE?

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XV

Durability

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 When a system accepts an update and won’t lose it,

we say that event has become durable

 Everyone jokes that the cloud has a permanent

memory and this of course is true

 Once data enters a cloud system, they rarely discard it

 More common to make lots of copies, index it…

 But loss of data due to a failure is an issue

Should Consistency “require” Durability?

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 The Paxos protocol guarantees durability to the

extent that its command lists are durable

 Normally we run Paxos with the command list on

disk, and hence Paxos can survive any crash

 In Isis2, this is g.SafeSend with the “DiskLogger” active

 But costly

Consider the first tier of the cloud

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 Recall that applications in the first tier are limited to

what Brewer calls “Soft State”

 They are basically prepositioned virtual machines that

the cloud can launch or shutdown very elastically

 But when they shut down, lose their “state” including any

temporary files

 Always restart in the initial state that was wrapped up

in the VM when it was built: no durable disk files

Examples of soft state?

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Anything that was cached but “really” lives in a database or
file server elsewhere in the cloud

 If you wake up with a cold cache, you just need to reload it with
fresh data

 Monitoring parameters, control data that you need to get
“fresh” in any case

 Includes data like “The current state of the air traffic control
system” – for many applications, your old state is just not used
when you resume after being offline

 Getting fresh, current information guarantees that you’ll be in sync
with the other cloud components

 Information that gets reloaded in any case, e.g. sensor values

Would it make sense to use Paxos?

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 We do maintain sharded data in the first tier and

some requests certainly trigger updates

 So that argues in favor of a consistency mechanism

 In fact consistency can be important even in the first

tier, for some cloud computing uses

Control of the smart power grid
7

 Suppose that a cloud control system speaks with

“two voices”

 In physical infrastructure settings, consequences can

be very costly

“Switch on the 50KV Canadian bus”

“Canadian 50KV bus going offline”

Bang!

So… would we use Paxos here?

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 In discussion of the CAP conjecture and their papers

on the BASE methodology, authors generally assume

that “C” in CAP is about ACID guarantees or Paxos

 Then argue that these bring too much delay to be

used in settings where fast response is critical

 Hence they argue against Paxos

By now we’ve seen a second option

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Virtual synchrony Send is “like” Paxos yet different

 Paxos has a very strong form of durability

 Send has consistency but weak durability unless you use
the “Flush” primitive. Send+Flush is amnesia-free

 Further complicating the issue, in Isis2 Paxos is called
SafeSend, and has several options

 Can set the number of acceptors

 Can also configure to run in-memory or with disk logging

How would we pick?

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 The application code looks nearly identical!

 g.Send(GRIDCONTROL, action to take)

 g.SafeSend(GRIDCONTROL, action to take)

 Yet the behavior is very different!

 SafeSend is slower

 … and has stronger durability properties. Or does it?

SafeSend in the first tier

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 Observation: like it or not we just don’t have a

durable place for disk files in the first tier

 The only forms of durability are

 In-memory replication within a shard

 Inner-tier storage subsystems like databases or files

 Moreover, the first tier is expect to be rapidly

responsive and to talk to inner tiers asynchronously

So our choice is simplified

CS5412 Spring 2012 (Cloud Computing: Birman)

12

 No matter what anyone might tell you, in fact the

only real choices are between two options

 Send + Flush: Before replying to the external customer,

we know that the data is replicated in the shard

 In-memory SafeSend: On an update by update basis,

before each update is taken, we know that the update

will be done at every replica in the shard

Consistency model: Virtual synchrony meets

Paxos (and they live happily ever after…)
13

 Virtual synchrony is a “consistency” model:

 Synchronous runs: indistinguishable from non-replicated object
that saw the same updates (like Paxos)

 Virtually synchronous runs are indistinguishable from
synchronous runs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

SafeSend versus Send

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 Send can have different delivery orders if there are

different senders

 In fact Isis2 offers other options, we’ll discuss them next

time.

 SafeSend can’t have the strange amnesia problem

see in the top right corner on the timeline picture

 But these guarantees are pretty costly!

Looking closely at that “oddity”

CS5412 Spring 2012 (Cloud Computing: Birman)

15

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Virtually synchronous execution “amnesia” example (Send but without calling Flush)

What made it odd?

CS5412 Spring 2012 (Cloud Computing: Birman)

16

 In this example a network partition occurred and,

before anyone noticed, some messages were sent

and delivered

 “Flush” would have blocked the caller, and SafeSend

would not have delivered those messages

 Then the failure erases the events in question: no

evidence remains at all

 So was this bad? OK? A kind of transient internal

inconsistency that repaired itself?

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Looking closely at that “oddity”

Looking closely at that “oddity”

Looking closely at that “oddity”

Paxos avoided the issue… at a price

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 SafeSend, Paxos and other multi-phase protocols

don’t deliver in the first round/phase

 This gives them stronger safety on a message by

message basis, but also makes them slower and less

scalable

 Is this a price we should pay for better speed?

Update the monitoring and

alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen

by end-user would

also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

 A B C

D

 An online monitoring system might focus on real-time response

and be less concerned with data durability

21

Revisiting our medical scenario

Isis2: Send v.s. in-memory SafeSend
22

Send scales best, but SafeSend with

in-memory (rather than disk) logging and small

numbers of acceptors isn’t terrible.

Jitter: how “steady” are latencies?

CS5412 Spring 2012 (Cloud Computing: Birman)

23

The “spread” of latencies is much

better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to

scheduling delays

Flush delay as function of shard size

CS5412 Spring 2012 (Cloud Computing: Birman)

24

Flush is fairly fast if we only wait for

acks from 3-5 members, but is slow

if we wait for acks from all members.

After we saw this graph, we changed

Isis2 to let users set the threshold.

First-tier “mindset” for tolerant f faults

CS5412 Spring 2012 (Cloud Computing: Birman)

25

 Suppose we do this:

 Receive request

 Compute locally using consistent data and perform
updates on sharded replicated data, consistently

 Asynchronously forward updates to services deeper in
cloud but don’t wait for them to be performed

 Use the “flush” to make sure we have f+1replicas

 Call this an “amnesia free” solution. Will it be fast
enough? Durable enough?

Which replicas?

CS5412 Spring 2012 (Cloud Computing: Birman)

26

 One worry is this

 If the first tier is totally under control of a cloud

management infrastructure, elasticity could cause our shard

to be entirely shut down “abruptly”

 Fortunately, most cloud platforms do have some ways to

notify management system of shard membership

 This allows the membership system to shut down members of

multiple shards without ever depopulating any single shard

 Now the odds of a sudden amnesia event become low

Advantage: Send+Flush?

CS5412 Spring 2012 (Cloud Computing: Birman)

27

 It seems that way, but there is a counter-argument

 The problem centers on the Flush delay

 We pay it both on writes and on some reads

 If a replica has been updated by an unstable multicast,

it can’t safely be read until a Flush occurs

 Thus need to call Flush prior to replying to client even in

a read-only procedure

 Delay will occur only if there are pending unstable multicasts

We don’t need this with SafeSend

CS5412 Spring 2012 (Cloud Computing: Birman)

28

 In effect, it does the work of Flush prior to the

delivery (“learn”) event

 So we have slower delivery, but now any replica is

always safe to read and we can reply to the client

instantly

 In effect the updater sees delay on his critical path,

but the reader has no delays, ever

Advantage: SafeSend?

CS5412 Spring 2012 (Cloud Computing: Birman)

29

 Argument would be that with both protocols, there is

a delay on the critical path where the update was

initiated

 But only Send+Flush ever delays in a pure reader

 So SafeSend is faster!

 But this argument is flawed…

Flaws in that argument

CS5412 Spring 2012 (Cloud Computing: Birman)

30

 The delays aren’t of the same length (in fact the

pure reader calls Flush but would rarely be

delayed)

 Moreover, if a request does multiple updates, we

delay on each of them for SafeSend, but delay just

once if we do Send…Send…Send…Flush

 How to resolve?

Only real option is to experiment

CS5412 Spring 2012 (Cloud Computing: Birman)

31

 In the cloud we often see questions that arise at

 Large scale,

 High event rates,

 … and where millisecond timings matter

 Best to use tools to help visualize performance

 Let’s see how one was used in developing Isis2

Something was… strangely slow

CS5412 Spring 2012 (Cloud Computing: Birman)

32

 We weren’t sure why or where

 Only saw it at high data rates in big shards

 So we ended up creating a visualization tool just to
see how long the system needed from when a
message was sent until it was delivered

 Here’s what we saw

Debugging: Stabilization bug
33

Eventually it pauses. The delay

is similar to a Flush delay. A

backlog was forming

At first Isis2 is running very

fast (as we later learned, too

fast to sustain)

Debugging : Stabilization bug fixed
34

The revised protocol is

actually a tiny bit slower, but

now we can sustain the rate

Debugging : 358-node run slowdown
35

Original problem but at an

even larger scale

358-node run slowdown: Zoom in
36

Hard to make sense of the

situation: Too much data!

358-node run slowdown: Filter
37

Filtering is a necessary part

of this kind of experimental

performance debugging!

Conclusions?

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 A question like “how much durability do I need in the first tier of the
cloud” is easy to ask…

 … much harder to answer!

 Study of the choices reveals that there are really two options

 Send + Flush

 SafeSend, in-memory

 They actually are similar but SafeSend has an internal “flush”
before any delivery occurs, on each request

 SafeSend seems more costly

 But must do experiments to really answer such questions

