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 When a system accepts an update and won’t lose it, 

we say that event has become durable 

 

 Everyone jokes that the cloud has a permanent 

memory and this of course is true 

 Once data enters a cloud system, they rarely discard it 

 More common to make lots of copies, index it… 

 

 But loss of data due to a failure is an issue 



Should Consistency “require” Durability? 
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 The Paxos protocol guarantees durability to the 

extent that its command lists are durable 

 

 Normally we run Paxos with the command list on 

disk, and hence Paxos can survive any crash 

 In Isis2, this is g.SafeSend with the “DiskLogger” active 

 But costly 



Consider the first tier of the cloud 

CS5412 Spring 2012 (Cloud Computing: Birman) 

4 

 Recall that applications in the first tier are limited to 

what Brewer calls “Soft State” 

 They are basically prepositioned virtual machines that 

the cloud can launch or shutdown very elastically 

 But when they shut down, lose their “state” including any 

temporary files 

 Always restart in the initial state that was wrapped up 

in the VM when it was built: no durable disk files 



Examples of soft state? 
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 Anything that was cached but “really” lives in a database or 
file server elsewhere in the cloud 

 If you wake up with a cold cache, you just need to reload it with 
fresh data 

 Monitoring parameters, control data that you need to get 
“fresh” in any case 

 Includes data like “The current state of the air traffic control 
system” – for many applications, your old state is just not used 
when you resume after being offline 

 Getting fresh, current information guarantees that you’ll be in sync 
with the other cloud components 

 Information that gets reloaded in any case, e.g. sensor values 



Would it make sense to use Paxos? 
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 We do maintain sharded data in the first tier and 

some requests certainly trigger updates 

 

 So that argues in favor of a consistency mechanism 

 

 In fact consistency can be important even in the first 

tier, for some cloud computing uses 



Control of the smart power grid 
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 Suppose that a cloud control system speaks with 

“two voices” 

 In physical infrastructure settings, consequences can 

be very costly 

“Switch on the 50KV Canadian bus” 

“Canadian 50KV bus going offline” 

Bang! 



So… would we use Paxos here? 
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 In discussion of the CAP conjecture and their papers 

on the BASE methodology, authors generally assume 

that “C” in CAP is about ACID guarantees or Paxos 

 Then argue that these bring too much delay to be 

used in settings where fast response is critical 

 Hence they argue against Paxos 



By now we’ve seen a second option 
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 Virtual synchrony Send is “like” Paxos yet different 

 

 Paxos has a very strong form of durability 

 Send has consistency but weak durability unless you use 
the “Flush” primitive.  Send+Flush is amnesia-free 

 

 Further complicating the issue, in Isis2 Paxos is called 
SafeSend, and has several options 

 Can set the number of acceptors 

 Can also configure to run in-memory or with disk logging 



How would we pick? 
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 The application code looks nearly identical! 

 g.Send(GRIDCONTROL, action to take) 

 g.SafeSend(GRIDCONTROL, action to take) 

 

 Yet the behavior is very different! 

 SafeSend is slower 

 … and has stronger durability properties.  Or does it? 



SafeSend in the first tier 
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 Observation: like it or not we just don’t have a 

durable place for disk files in the first tier 

 

 The only forms of durability are 

 In-memory replication within a shard 

 Inner-tier storage subsystems like databases or files 

 

 Moreover, the first tier is expect to be rapidly 

responsive and to talk to inner tiers asynchronously 



So our choice is simplified 
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 No matter what anyone might tell you, in fact the 

only real choices are between two options 

 

 Send + Flush: Before replying to the external customer, 

we know that the data is replicated in the shard 

 

 In-memory SafeSend: On an update by update basis, 

before each update is taken, we know that the update 

will be done at every replica in the shard 



Consistency model: Virtual synchrony meets 

Paxos (and they live happily ever after…) 
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 Virtual synchrony is a “consistency” model:  

 Synchronous  runs: indistinguishable from non-replicated object 
that saw the same updates (like Paxos) 

 Virtually synchronous runs are indistinguishable from 
synchronous runs 
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SafeSend versus Send 

CS5412 Spring 2012 (Cloud Computing: Birman) 

14 

 Send can have different delivery orders if there are 

different senders 

 In fact Isis2 offers other options, we’ll discuss them next 

time. 

 

 SafeSend can’t have the strange amnesia problem 

see in the top right corner on the timeline picture 

 

 But these guarantees are pretty costly! 

 

 



Looking closely at that “oddity” 
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Virtually synchronous execution “amnesia” example (Send but without calling Flush) 



What made it odd? 
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 In this example a network partition occurred and, 

before anyone noticed, some messages were sent 

and delivered 

 “Flush” would have blocked the caller, and SafeSend 

would not have delivered those messages 

 Then the failure erases the events in question: no 

evidence remains at all 

 So was this bad?  OK?  A kind of transient internal 

inconsistency that repaired itself? 
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Looking closely at that “oddity” 



Looking closely at that “oddity” 



Looking closely at that “oddity” 



Paxos avoided the issue… at a price 
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 SafeSend, Paxos and other multi-phase protocols 

don’t deliver in the first round/phase 

 

 This gives them stronger safety on a message by 

message basis, but also makes them slower and less 

scalable 

 

 Is this a price we should pay for better speed? 



Update the monitoring and 

alarms criteria for Mrs. Marsh 

as follows… 
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 An online monitoring system might focus on real-time response 

and be less concerned with data durability 

21 

Revisiting our medical scenario 



Isis2: Send v.s. in-memory SafeSend 
22 

Send scales best, but SafeSend with  

in-memory  (rather than disk) logging and small  

numbers of acceptors isn’t terrible.   

 



Jitter: how “steady” are latencies? 
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The “spread” of latencies is much 

better (tighter) with Send: the 2-phase 

SafeSend protocol is sensitive to  

scheduling delays 

 



Flush delay as function of shard size 
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Flush is fairly fast if we only wait for 

acks from 3-5 members, but is slow 

if we wait for acks from all members. 

After we saw this graph, we changed 

Isis2 to let users set the threshold.   

 



First-tier “mindset” for tolerant f faults 
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 Suppose we do this: 

 Receive request 

 Compute locally using consistent data and perform 
updates on sharded replicated data, consistently 

 Asynchronously forward updates to services deeper in 
cloud but don’t wait for them to be performed 

 Use the “flush” to make sure we have f+1replicas 

 

 Call this an “amnesia free” solution.  Will it be fast 
enough?  Durable enough? 



Which replicas? 
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 One worry is this 

 If the first tier is totally under control of a cloud 

management infrastructure, elasticity could cause our shard 

to be entirely shut down “abruptly” 

 

 Fortunately, most cloud platforms do have some ways to 

notify management system of shard membership 

 This allows the membership system to shut down members of 

multiple shards without ever depopulating any single shard 

 Now the odds of a sudden amnesia event become low 



Advantage: Send+Flush? 
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 It seems that way, but there is a counter-argument 

 

 The problem centers on the Flush delay 

 We pay it both on writes and on some reads 

 If a replica has been updated by an unstable multicast,  

it can’t safely be read until a Flush occurs 

 Thus need to call Flush prior to replying to client even in 

a read-only procedure 

 Delay will occur only if there are pending unstable multicasts 



We don’t need this with SafeSend 
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 In effect, it does the work of Flush prior to the 

delivery (“learn”) event 

 

 So we have slower delivery, but now any replica is 

always safe to read and we can reply to the client 

instantly 

 

 In effect the updater sees delay on his critical path, 

but the reader has no delays, ever 



Advantage: SafeSend? 
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 Argument would be that with both protocols, there is 

a delay on the critical path where the update was 

initiated 

 

 But only Send+Flush ever delays in a pure reader 

 

 So SafeSend is faster!   

 But this argument is flawed… 



Flaws in that argument 
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 The delays aren’t of the same length (in fact the 

pure reader calls Flush but would rarely be 

delayed) 

 

 Moreover, if a request does multiple updates, we 

delay on each of them for SafeSend, but delay just 

once if we do Send…Send…Send…Flush 

 

 How to resolve? 



Only real option is to experiment 
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 In the cloud we often see questions that arise at 

 Large scale, 

 High event rates, 

 … and where millisecond timings matter 

 

 Best to use tools to help visualize performance 

 

 Let’s see how one was used in developing Isis2 



Something was… strangely slow 
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 We weren’t sure why or where 

 

 Only saw it at high data rates in big shards 

 

 So we ended up creating a visualization tool just to 
see how long the system needed from when a 
message was sent until it was delivered 

 

 Here’s what we saw 



Debugging: Stabilization bug 
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Eventually it pauses.  The delay 

is similar to a Flush delay.  A 

backlog was forming 

At first Isis2 is running very 

fast (as we later learned, too 

fast to sustain) 



Debugging : Stabilization bug fixed 
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The revised protocol is 

actually a tiny bit slower, but 

now we can sustain the rate 



Debugging : 358-node run slowdown 
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Original problem but at an 

even larger scale 



358-node run slowdown: Zoom in 
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Hard to make sense of the 

situation: Too much data! 



358-node run slowdown: Filter 
37 

Filtering is a necessary part 

of this kind of experimental 

performance debugging! 



Conclusions? 
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 A question like “how much durability do I need in the first tier of the 
cloud” is easy to ask… 

 … much harder to answer! 

 

 Study of the choices reveals that there are really two options 

 Send + Flush 

 SafeSend, in-memory 

 

 They actually are similar but SafeSend has an internal “flush” 
before any delivery occurs, on each request 

 SafeSend seems more costly 

 But must do experiments to really answer such questions 


