
CS5412:

PAXOS

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XIII

Leslie Lamport’s vision

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 Centers on state machine replication

 We have a set of replicas that each implement some

given, deterministic, state machine and we start them in

the same state

 Now we apply the same events in the same order. The

replicas remain in the identical state

 To tolerate ≤ t failures, deploy 2t+1 replicas (e.g.

Paxos with 3 replicas can tolerate 1 failure)

 How best to implement this model?

Two paths forwards...

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 One option is to build a totally ordered reliable
multicast protocol, also called an “atomic broadcast”
protocol in some papers

 To send a request, you give it to the library implementing
that protocol (for cs5412: probably Isis2).

 Eventually it does upcalls to event handlers in the replicated
application and they apply the event

 In this approach the application “is” the state machine and
the multicast “is” the replication mechanism

 Use “state transfer” to initialize a joining process if we
want to replace replicas that crash

Two paths forwards...

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 A second option, explored in Lamport’s Paxos protocol,
achieves a similar result but in a very different way

 We’ll look at Paxos first because the basic protocol is
simple and powerful, but we’ll see that Paxos is slow

 Can speed it up... but doing so makes it very complex!

 The basic, slower form of Paxos is currently very popular

 Then will look at faster but more complex reliable
multicast options (many of them...)

Key idea in Paxos: Quorums

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Starts with a simple observation:

 Suppose that we lock down the membership of a

system: It has replicas {P, Q, R, ... }

 But sometimes, some of them can’t be reached in a

timely way.

 How can we manage replicated data in this setting?

 Updates would wait, potentially forever!

 If a Read sees a copy that hasn’t received some

update, it returns the wrong value

Quorum policy: Updates (writes)

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 To permit progress, allow an update to make progress

without waiting for all the copies to acknowledge it.

 Instead, require that a “write quorum” (or update quorum)

must participate in the update

 Denote by QW. For example, perhaps QW=N-1 to make

progress despite 1 failure (assumes N>1, obviously)

 Can implement this using a 2-phase commit protocol

 With this approach some replicas might “legitimately”

miss some updates. How can we know the state?

Quorum policy: Reads

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 To compensate for the risk that some replicas lack

some writes, we must read multiple replicas

 … enough copies to compensate for gaps

 Accordingly, we define the read quorum, QR to be

large enough to overlap with any prior update that

was successful. E.g. might have QR = 2

Verify that they overlap

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 So: we want

 QW + QR > N: Read overlaps with updates

 QW + QW > N: Any two writes, or two updates, overlap

 The second rule is needed to ensure that any pair of

writes on the same item occur in an agreed order

R1 R2 R3
N = 3

QW = 2

QR = 2 Write x=7

Read x

Things that can make quorums tricky

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Until the leader sees that a quorum was reached,
an update is pending but could “fail”

 This is why we use a 2PC protocol to do updates

 But what if leader fails before finishing phase 2?

 If the proposer crashes, the participants might have a
pending update but not know the outcome

 In fact we need to complete such an interrupted 2PC

 Otherwise subsequent updates can commit but we won’t
be able to read the state of the system since we’ll be
unsure whether the interrupted one succeeded or failed

Things that can make quorums tricky

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 We might sometimes need to adjust the quorum

sizes, or the value of N, while the system is running

 This topic was explored in papers by Maurice Herlihy

 He came up with an idea he called “Quorum Ratchet

Locking” in which we use two quorum systems

 One controls updates or reads (QW, QR)

 A second one controls the values of N, QW, QR

 While updating the second one we “lock out” the basic read

and update operations. This is the “ratchet lock” concept

 Paper on this appeared in 1986

Paxos builds on this idea

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 Lamport’s work, which appeared in 1990, basically

takes the elements of a quorum system and

reassembles them in an elegant way

 Basic components of what Herlihy was doing are there

 Actual scheme was used in nearly identical form by Oki

and Liskov in a paper on “Viewstamped Replication”

 Lamport’s key innovation was the proof

methodology he pioneered for Paxos

Paxos: Step by step

CS5412 Spring 2012 (Cloud Computing: Birman)

12

 Paxos is designed to deal with systems that

 Reach agreement on what “commands” to execute, and on
the order in which to execute them in

 Ensure durability: once a command becomes executable, the
system will never forget the command

 The term command is interchangable with “message”
and the term “execute” means “take action”

 But we will see later that Paxos is not a reliable
multicast protocol. It normally needs to be part of a
replicated system, not a separate library

Terminology

CS5412 Spring 2012 (Cloud Computing: Birman)

13

 In Paxos we distinguish several roles

 A single process might (often will) play more than one role at
the same time

 The roles are a way of organizing the code and logic and
thinking about the proof, not separate programs that run on
separate machines

 These roles are:

 Proposer, which represents the application “talking to” Paxos

 Coordinator (a leader that runs the protocol),

 Acceptor (a participant), and

 Learner, which represents Paxos “talking to” the application

Visualizing this

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 The proposer requests that the Paxos system accept
some command. Paxos is like a “postal system”

 It thinks about the letter for a while (replicating the
data and picking a delivery order)

 Once these are “decided” the learners can execute the
command

R1 R2 R3

learners proposer

coordinator

Acceptor Acceptor Acceptor

Why even mention proposers/learners?

CS5412 Spring 2012 (Cloud Computing: Birman)

15

 We need to “model” the application that uses Paxos

 It turns out that correct use of Paxos requires very

specific behavior from that application

 You need to get this right or Paxos doesn’t achieve

your application objectives

 In effect, Paxos and the application are “combined”

 In other words, Paxos is not a multicast library.

Proposer role

CS5412 Spring 2012 (Cloud Computing: Birman)

16

 When an application wants the state machine to
perform some action, it prepares a “command” and
gives it to a process that can play the proposer role.

 The coordinator will run the Paxos protocol

 Ideally there is just one coordinator, but nothing bad
happens if there happen to be two or more for a while

 Coordinator is like the leader in a 2PC protocol

 The command is application-specific and might be,
e.g., “dispense $100 from the ATM in Statler Hall”

Coordinator role

CS5412 Spring 2012 (Cloud Computing: Birman)

17

 It runs the Paxos protocol, which has two phases

 Phase 1 “prepares” the acceptors to commit some action.
Several tries may be required

 Phase 2 “decides” what command will be performed.
Sometimes the decision is that no command will be executed.

 We run this protocol for a series of “slots” that
constitute a list of commands the system has decided

 Once decided, the commands are performed in the
order corresponding to the slot numbers by “learners”

Acceptor role: Maintain “command list”

CS5412 Spring 2012 (Cloud Computing: Birman)

18

 The Paxos replicas maintain a long list of commands

 Think of it as a vector indexed by “slot number”

 Slots are integers numbered 0, 1,

 While running the protocol, a given replica might have

a command in a slot, and that command may be in an

“accepted” state or in a “decided” state

 Replicas each have distinct copies of this data

Ballot numbers

CS5412 Spring 2012 (Cloud Computing: Birman)

19

 Goal is to reach agreement that a specific

command will be performed in a particular slot

 But it can take multiple rounds of trying (in fact,

theoretically, it can take an unlimited number,

although in practice this won’t be an issue)

 These rounds are numbered using “ballot numbers”

Basic idea of the protocol

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 Coordinator proposes a specific command in a specific slot
in a particular ballot

 If two coordinators compete the one with the higher ballot will
always dominate.

 If two coordinators compete with the same slot # and ballot #, at
most one (perhaps neither) will succeed

 Also, when they notice that they are competing, one of them
yields to the other we soon end up with just one coordinator

 We never talk about a command without slot and ballot #s

 Paxos is about agreeing to execute the “Withdraw $100” first,
and then the “Deposit $250” second

 Slot # is the order in which to perform the commands

Commands go through “states”

CS5412 Spring 2012 (Cloud Computing: Birman)

21

 Initially a command is known only to proposer & coordinator

 Then it gets sent to “acceptors” and they are asked to
“prepare” to execute the command.

 If a quorum is reached, then the acceptors are told that the
command has been “accepted”.

 A command is “decided” by running a second phase

 A decided command can be executed (unless
you overdraw your account)

Request denied:

Exceeds current

balance ($31.17)

Learner role

CS5412 Spring 2012 (Cloud Computing: Birman)

22

 The learner watches and waits until new commands

become committed (decided)

 As slots become decided, the learner is able to find out

if a decided slot has a command, or nothing in it.

 Goes to the next slot if “no command”

 Performs the command if a command is present

 Can’t skip a slot: learner takes one step at a time

Core protocol

CS5412 Spring 2012 (Cloud Computing: Birman)

23

 Phase 1: Coordinator sends prepare (slot,b,c) to

acceptors

 It thinks this is a free slot and the next ballot number

 An acceptor looks at the slot and ballot number

 If it hasn’t previously voted in this slot, for this ballot number,

it votes to accept the ballot and remembers the command

 Otherwise it votes against the ballot and sends back the

command it previously accepted

Core protocol

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 Coordinator wants to achieve a write quorum

 If it succeeds, it starts phase 2 by asking acceptors to
commit (slot,b,c) for the ballot number on which it got a
quorum

 Acceptor agrees if this is the highest ballot number for
which it has been asked to participate in phase 2,
otherwise rejects the request

 If it again achieves a quorum of acknowledgments, the
request has been decided and the coordinator sends
out a “decide” (“commit”) message

 Otherwise it retries phase 1

Failed command

CS5412 Spring 2012 (Cloud Computing: Birman)

25

 If two coordinators both run phase 2, at most one

command can be decided

 The coordinator that fails will need to retry with

some other slot number

 There is also a case in which neither is able to

succeed and both move to the next slot number

Things to notice

CS5412 Spring 2012 (Cloud Computing: Birman)

26

 If a command is decided in some slot, for some

ballot number, no other command can be accepted

into that same slot (for any ballot number)

 To prove this, observe that for this to be violated, some

acceptor would need to accept a phase 1 message

after accepting a phase 2 message

 This is because QW+QW > N

More things to notice

CS5412 Spring 2012 (Cloud Computing: Birman)

27

 A coordinator may not actually realize that its

command was accepted by a majority!

 Messages are unreliable so the accepted messages can

be lost, just like “yes” votes in 2PC

 This would cause the coordinator to retry the same

command with some other ballot number

 Nothing bad will happen

Things to notice about phase 2

CS5412 Spring 2012 (Cloud Computing: Birman)

28

 Two coordinators could both try to enter phase 2 with
different commands

 One with ballot number b

 Another with some ballot number b’ > b

 In phase 2, only the latter could succeed and commit
because there won’t be a “surviving” quorum that have
voted for command c with ballot b

 Even though some acceptors might phase for the earlier
command in phase 2, that coordinator definitely can’t get a
quorum and will fail

 The case that leads to a “nothing” decision combines this
scenario with an actual failure, so that both coordinators
enter phase 2, and neither can decide

Learning (aka “Deciding”)

CS5412 Spring 2012 (Cloud Computing: Birman)

29

 The learner might see a “decide” message, but if not
can still advance by doing quorum reads

 Its local replica of the command list, if it is also an acceptor,.
might have gaps, or lack outcomes for some commands

 By doing a quorum read, a learner can be certain to
discover any committed command. If it also notices an
unterminated entry in the history, it can fix it

 A learner executes an accepted (decided) command if

 It knows the decision for every slot up to and including the
slot in which that command was decided, and

 It has executed every prior accepted command

Failures?

CS5412 Spring 2012 (Cloud Computing: Birman)

30

 Paxos “rides out” many kinds of failures

 As long as a quorum remain available, Paxos can make

progress

 But this also reminds us that no single command list will

necessarily include every decided command

 If we look at just one command list, we would often see

gaps where some coordinator didn’t reach that

acceptor, but didn’t turn out to need to do so

Failed coordinator?

CS5412 Spring 2012 (Cloud Computing: Birman)

31

 If a coordinator crashes, the next time a coordinator

tries to run, it will notice any pending but undecided

commands in the history

 It completes those interrupted protocol instances on

behalf of the failed coordinator

 This way Paxos makes progress

32

In Failure-Free Synchronous Runs

1 1

2

n

.

.

.

(“accept”, 1,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 1,1)

(“ack”, 1,1, 0,0,^)

decide v1

(“accept”, 1,1 ,v1)

Simple Paxos implementation

always trusts process 1

Reconfigurable Paxos

CS5412 Spring 2012 (Cloud Computing: Birman)

33

 Lamport extended Paxos to support changing membership

 Basically, this entails

 Suspending the current configuration (“wedge” it)

 Reaching agreement on the initial state (initial command list
and new quorum configuration policy
(N, QW, QR) that will be used in the new state machine)
 A version of the learner role

 In effect, the members of the new configuration learn the outcome of
the prior configuration

 Then can start the new configuration

 The old wedged configuration has been “terminated”

Paxos optimizations

CS5412 Spring 2012 (Cloud Computing: Birman)

34

 Using a leader-election scheme we can reduce the

risk of having two proposers that intefere with each

other (if that happens, they can repeatedly abort)

 We can batch requests and do several a time

 We can combine several proposals and run them all

at the same time, for distinct slots

 The trick is that we build this as incremental steps so

the “correctness” of the core protocol is unchanged

Comments on Paxos

CS5412 Spring 2012 (Cloud Computing: Birman)

35

 The solution is very robust

 Guarantees agreement and durability

 Elegant, simple correctness proofs

 FLP impossibility result still applies!

 Question: How would the adversary “attack” Paxos?

 Paxos is quite slow. Quorum updates with a 2PC

structure plus quorum reads to “learn” state

Paxos with a disk

CS5412 Spring 2012 (Cloud Computing: Birman)

36

 Very often we want a system to survive complete
crashes where all members go down, then recover

 An “in-memory” Paxos won’t have this property

 Accordingly, the command list must often be kept on
a disk, as a disk log

 Now accept and commit actions involved disk writes
that must complete before next step can occur

 Further slows the protocol down

 In Isis2 implemented by SafeSend DiskLogger durability
plugin (enabled via g.SetDurabilityMethod)

Paxos in Isis2

CS5412 Spring 2012 (Cloud Computing: Birman)

37

 Access via the g.SafeSend API

 You chose between in-memory and disk Paxos

 Must also tell the system how many acceptors to use

 Is SafeSend really Paxos?

 Yes… but… it includes an optimization that simplifies

the protocol and speeds up learners

 Discussed in Appendix A of textbook

 The properties are exactly those of standard Paxos

Paxos isn’t a reliable multicast!

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 Consider the following common idea:

 Take a file, or a database

 Make N replicas

 Now put a program that runs Paxos in front of the

replicated file/db

 Learner just asks the file to do the command (a write or

append), or the DB to run an update query

 Would this be correct? Why?

Correct use of Paxos

CS5412 Spring 2012 (Cloud Computing: Birman)

39

 The learner needs to be a part of the application!

 By treating the learner as part of Paxos, we
erroneously ignore the durability of actions in the
application state, and this causes potential error

 The application must perform every operation, at least once

 Learner retries after crashes until application has definitely
performed each action.

 To avoid duplicated actions, application should check for
and ignore actions already applied to the database

 Many Paxos-based replication systems are incorrect
because they fail to implement this logic!

How this works in Isis2

CS5412 Spring 2012 (Cloud Computing: Birman)

40

 The DiskLogger durability method has a “dialog”

with the application

 DiskLogger+application are like a learner

 When DiskLogger delivers a message the application must

“confirm” accepting that operation

 E.g. might apply it to a database and wait until done

 If a crash happens, DiskLogger will redeliver any

unconfirmed messages until it gets confirmation

 With in-memory durability, SafeSend skips this step

 But this is weaker than the way Paxos is “normally” used

Other Paxos oddities

CS5412 Spring 2012 (Cloud Computing: Birman)

41

 To increase performance, Paxos introduces a “window of
concurrency” : as many as  commands might be
concurrently decided

 E.g. instead of proposing the next slot, we can allow proposals
for slots s, s+1, … s+-1

 But this adds an issue: when new configuration is defined, as
many as -1 commands may still be decided “late”, in the new
configuration

 This can be a problem for application with configuration-specific
commands; they need to add “guards” like “As long as the
configuration is still {P,Q,R} deduct $100 from the account and
dispense the cash”

 This is annoying and error-prone, so many run with =1but then
run slowly because they can’t leverage concurrency

Other Paxos oddities

CS5412 Spring 2012 (Cloud Computing: Birman)

42

 A really strange thing can happen if we add

members in new configurations

 Paxos requires that we “learn” the configuration

 But some Paxos implementations short-cut this by

copying some command list from an old member to a

new one: “state transfer”

 That’s a mistake: some command that was marked as

accepted but never committed (never decided) because

it lacked a write quorum could later pass the write-

quorum threshold retroactively!

Other Paxos oddities

CS5412 Spring 2012 (Cloud Computing: Birman)

43

 Example: command x reaches just P in {P,Q,R} in slot 17 on
ballot 1.

 x doesn’t achieve a quorum and eventually slot 17 decides
“nothing”

 Some time later Q and R are replaced by S and T in a new
configuration and S and T initialize themselves from rather than
“learning” from {P,Q,R}

 Now x is in P,Q,R’s command list and hence has a quorum

 So it sort of gets decided “very late” and at a time long in the
past!

 Causes serious bugs in applications that use Paxos reconfiguration
if this style of reconfiguration plus state transfer is used. The
version with a learner, though, can be slow and hard to
implement!

Paxos summary

CS5412 Spring 2012 (Cloud Computing: Birman)

44

 An important and widely studied/used protocol

(perhaps the most important agreement protocol)

 Developed by Lamport but the protocol per-se

wasn’t really the innovation

 Similar protocols were widely used prior to Paxos

 The key advance was the proof methodology

 We touched on one corner of it

 Lamport addresses the full set of features in his

45

Leslie Lamport’s Reflections

 “Inspired by my success at popularizing the consensus problem
by describing it with Byzantine generals, I decided to cast the
algorithm in terms of a parliament on an ancient Greek island.

 “To carry the image further, I gave a few lectures in the persona
of an Indiana-Jones-style archaeologist.

 “My attempt at inserting some humor into the subject was a
dismal failure.

46

The History of the Paper by Lamport

 “I submitted the paper to TOCS in 1990. All three referees said
that the paper was mildly interesting, though not very important,
but that all the Paxos stuff had to be removed. I was quite
annoyed at how humorless everyone working in the field seemed
to be, so I did nothing with the paper.”

 “A number of years later, a couple of people at SRC needed
algorithms for distributed systems they were building, and Paxos
provided just what they needed. I gave them the paper to read
and they had no problem with it. So, I thought that maybe the
time had come to try publishing it again.”

 Along the way, Leslie kept extending Paxos and proving the extensions
correct. And this is what made Paxos important: the process of getting
there while preserving correctness!

