
CS5412:

CONSENSUS AND THE FLP

IMPOSSIBILITY RESULT

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XII

Generalizing Sam and Jill’s challenge

 Recall from last time: Sam and Jill had difficulty

agreeing where to meet for lunch

 The central issue was that they never knew for sure if email

was delivered... and always ended up in the “default” case

 In general we often see cases in which N processes must

agree upon something

 Often reduced to “agreeing on a bit” (0/1)

 To make this non-trivial, we assume that processes have an

input and must pick some legitimate input value

 Can we implement a fault-tolerant agreement protocol?

CS5412 Spring 2012 (Cloud Computing: Birman)

2

Connection to consistency

 A system behaves consistently if users can’t
distinguish it from a non-distributed system that
supports the same functionality

 Many notions of consistency reduce to agreement on
the events that occurred and their order

 Could imagine that our “bit” represents

 Whether or not a particular event took place

 Whether event A is the “next” event

 Thus fault-tolerant consensus is deeply related to
fault-tolerant consistency

CS5412 Spring 2012 (Cloud Computing: Birman)

3

Consensus  Agreement?

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 For CS5412 we treat these as synonyms

 The theoretical distributed systems community has

detailed definitions and for that group, the terms

refer to very similar but not identical problems

 Today we’re “really” focused on Consensus, but

don’t worry about the distinctions

Fischer, Lynch and Patterson

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 A surprising result

 Impossibility of Asynchronous Distributed Consensus with

a Single Faulty Process

 They prove that no asynchronous algorithm for

agreeing on a one-bit value can guarantee that it

will terminate in the presence of crash faults

 And this is true even if no crash actually occurs!

 Proof constructs infinite non-terminating runs

Core of FLP result

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 They start by looking at an asynchronous system of N
processes with inputs that are all the same

 All 0’s must decide 0, all 1’s decides 1

 They are assume we are given a correct consensus
protocol that will “vote” (somehow) to pick one of the
inputs, e.g. perhaps the majority value

 Now they focus on an initial set of inputs with an uncertain
(“bivalent”) outcome (nearly a tie)

 For example: N=5 and with a majority of 0’s the protocol
picks 0, but with a tie, it picks 1. Thus if one of process with
a 0 happens to fail, the outcome is different than if all vote

Core of FLP result

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 Now they will show that from this bivalent state we

can force the system to do some work and yet still

end up in an equivalent bivalent state

 Then they repeat this procedure

 Effect is to force the system into an infinite loop!

 And it works no matter what correct consensus protocol

you started with. This makes the result very general

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state

S0 denotes a decision 0 state

S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

CS5412 Spring 2012 (Cloud Computing: Birman)

8

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that takes

us from a bivalent to a

univalent state: eventually

we’ll “decide” 0

CS5412 Spring 2012 (Cloud Computing: Birman)

9

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show that

there is a situation in which the

system will return to a bivalent

state

S’*

CS5412 Spring 2012 (Cloud Computing: Birman)

10

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’*

In this new state they show that

we can deliver e and that now,

the new state will still be

bivalent!

S’’*

e

CS5412 Spring 2012 (Cloud Computing: Birman)

11

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’*

Notice that we made the system

do some work and yet it ended

up back in an “uncertain” state.

We can do this again and again

S’’*

e

CS5412 Spring 2012 (Cloud Computing: Birman)

12

Core of FLP result in words

 In an initially bivalent state, they look at some

execution that would lead to a decision state, say “0”

 At some step this run switches from bivalent to univalent,

when some process receives some message m

 They now explore executions in which m is delayed

CS5412 Spring 2012 (Cloud Computing: Birman)

13

Core of FLP result

 So:

 Initially in a bivalent state

 Delivery of m would make us univalent but we delay m

 They show that if the protocol is fault-tolerant there must be a run that
leads to the other univalent state

 And they show that you can deliver m in this run without a decision being
made

 This proves the result: they show that a bivalent system can be
forced to do some work and yet remain in a bivalent state.

 If this is true once, it is true as often as we like

 In effect: we can delay decisions indefinitely

CS5412 Spring 2012 (Cloud Computing: Birman)

14

But how did they “really” do it?

 Our picture just gives the basic idea

 Their proof actually proves that there is a way to

force the execution to follow this tortured path

 But the result is very theoretical…

 … to much so for us in CS5412

 So we’ll skip the real details

CS5412 Spring 2012 (Cloud Computing: Birman)

15

Intuition behind this result?

 Think of a real system trying to agree on something in
which process p plays a key role

 But the system is fault-tolerant: if p crashes it adapts
and moves on

 Their proof “tricks” the system into thinking p failed

 Then they allow p to resume execution, but make the system
believe that perhaps q has failed

 The original protocol can only tolerate1 failure, not 2, so it
needs to somehow let p rejoin in order to achieve progress

 This takes time… and no real progress occurs

CS5412 Spring 2012 (Cloud Computing: Birman)

16

But what did “impossibility” mean?

 In formal proofs, an algorithm is totally correct if

 It computes the right thing

 And it always terminates

 When we say something is possible, we mean “there is a
totally correct algorithm” solving the problem

 FLP proves that any fault-tolerant algorithm solving consensus
has runs that never terminate

 These runs are extremely unlikely (“probability zero”)

 Yet they imply that we can’t find a totally correct solution

 And so “consensus is impossible” (“not always possible”)

CS5412 Spring 2012 (Cloud Computing: Birman)

17

How did they pull this off?

CS5412 Spring 2012 (Cloud Computing: Birman)

18

 A very clever adversarial attack

 They assume they have perfect control over which
messages the system delivers, and when

 They can pick the exact state in which a message
arrives in the protocol

 They use this ultra-precise control to force the
protocol to loop in the manner we’ve described

 In practice, no adversary ever has this much control

In the real world?

CS5412 Spring 2012 (Cloud Computing: Birman)

19

 The FLP scenario “could happen”

 After all, it is a valid scenario.

 ... And any valid scenario can happen

 But step by step they take actions that are incredibly
unlikely. For many to happen in a row is just impossible
in practice

 A “probability zero” sequence of events

 Yet in a temporal logic sense, FLP shows that if we can prove
correctness for a consensus protocol, we’ll be unable to
prove it live in a realistic network setting, like a cloud system

So...

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 Fault-tolerant consensus is...

 Definitely possible (not even all that hard). Just vote!

 And we can prove protocols of this kind correct.

 But we can’t prove that they will terminate

 If our goal is just a probability-one guarantee, we

actually can offer a proof of progress

 But in temporal logic settings we want perfect

guarantees and we can’t achieve that goal

Recap

 We have an asynchronous model with crash failures

 A bit like the real world!

 In this model we know how to do some things

 Tracking “happens before” & making a consistent snapshot

 Later we’ll find ways to do ordered multicast and implement replicated
data and even solve consensus

 But now we also know that there will always be scenarios in
which our solutions can’t make progress

 Often can engineer system to make them extremely unlikely

 Impossibility doesn’t mean these solutions are wrong – only that they live
within this limit

CS5412 Spring 2012 (Cloud Computing: Birman)

21

Tougher failure models

 We’ve focused on crash failures

 In the synchronous model these look like a “farewell cruel

world” message

 Some call it the “failstop model”. A faulty process is viewed

as first saying goodbye, then crashing

 What about tougher kinds of failures?

 Corrupted messages

 Processes that don’t follow the algorithm

 Malicious processes out to cause havoc?

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Here the situation is much harder

 Generally we need at least 3f+1 processes in a

system to tolerate f Byzantine failures

 For example, to tolerate 1 failure we need 4 or more

processes

 We also need f+1 “rounds”

 Let’s see why this happens

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Byzantine scenario

 Generals (N of them) surround a city
 They communicate by courier

 Each has an opinion: “attack” or “wait”
 In fact, an attack would succeed: the city will fall.

 Waiting will succeed too: the city will surrender.

 But if some attack and some wait, disaster ensues

 Some Generals (f of them) are traitors… it doesn’t
matter if they attack or wait, but we must prevent
them from disrupting the battle
 Traitor can’t forge messages from other Generals

CS5412 Spring 2012 (Cloud Computing: Birman)

24

Byzantine scenario

Attack!

Wait…

Attack!

Attack!

No, wait!

Surrender!

Wait…

CS5412 Spring 2012 (Cloud Computing: Birman)

25

A timeline perspective

 Suppose that p and q favor attack, r is a traitor
and s and t favor waiting… assume that in a tie
vote, we attack

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

26

A timeline perspective

 After first round collected votes are:

 {attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

27

What can the traitor do?

 Add a legitimate vote of “attack”

 Anyone with 3 votes to attack knows the outcome

 Add a legitimate vote of “wait”

 Vote now favors “wait”

 Or send different votes to different folks

 Or don’t send a vote, at all, to some

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Outcomes?

 Traitor simply votes:
 Either all see {a,a,a,w,w}

 Or all see {a,a,w,w,w}

 Traitor double-votes
 Some see {a,a,a,w,w} and some {a,a,w,w,w}

 Traitor withholds some vote(s)
 Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still

others see {a,a,w,w,w}

 Notice that traitor can’t manipulate votes of loyal
Generals!

CS5412 Spring 2012 (Cloud Computing: Birman)

29

What can we do?

 Clearly we can’t decide yet; some loyal Generals
might have contradictory data

 In fact if anyone has 3 votes to attack, they can already
“decide”.

 Similarly, anyone with just 4 votes can decide

 But with 3 votes to “wait” a General isn’t sure (one could be
a traitor…)

 So: in round 2, each sends out “witness” messages:
here’s what I saw in round 1

 General Smith send me: “attack(signed) Smith”

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Digital signatures

 These require a cryptographic system

 For example, RSA

 Each player has a secret (private) key K-1 and a public
key K.

 She can publish her public key

 RSA gives us a single “encrypt” function:

 Encrypt(Encrypt(M,K),K-1) = Encrypt(Encrypt(M,K-1),K) = M

 Encrypt a hash of the message to “sign” it

CS5412 Spring 2012 (Cloud Computing: Birman)

31

With such a system

 A can send a message to B that only A could have
sent
 A just encrypts the body with her private key

 … or one that only B can read
 A encrypts it with B’s public key

 Or can sign it as proof she sent it
 B can recompute the signature and decrypt A’s hashed

signature to see if they match

 These capabilities limit what our traitor can do: he
can’t forge or modify a message

CS5412 Spring 2012 (Cloud Computing: Birman)

32

A timeline perspective

 In second round if the traitor didn’t behave
identically for all Generals, we can weed out his
faulty votes

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

33

A timeline perspective

 We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn! They’re on to me

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Traitor is stymied

 Our loyal generals can deduce that the decision was

to attack

 Traitor can’t disrupt this…

 Either forced to vote legitimately, or is caught

 But costs were steep!

 (f+1)*n2 ,messages!

 Rounds can also be slow….

 “Early stopping” protocols: min(t+2, f+1) rounds; t is true

number of faults

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Recent work with Byzantine model

 Focus is typically on using it to secure particularly
sensitive, ultra-critical services

 For example the “certification authority” that hands out keys
in a domain

 Or a database maintaining top-secret data

 Researchers have suggested that for such purposes, a
“Byzantine Quorum” approach can work well

 They are implementing this in real systems by
simulating rounds using various tricks

CS5412 Spring 2012 (Cloud Computing: Birman)

36

Byzantine Quorums

 Arrange servers into a  n x n array

 Idea is that any row or column is a quorum

 Then use Byzantine Agreement to access that quorum, doing

a read or a write

 Separately, Castro and Liskov have tackled a related

problem, using BA to secure a file server

 By keeping BA out of the critical path, can avoid most of the

delay BA normally imposes

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Split secrets

 In fact BA algorithms are just the tip of a broader
“coding theory” iceberg

 One exciting idea is called a “split secret”
 Idea is to spread a secret among n servers so that any k can

reconstruct the secret, but no individual actually has all the
bits

 Protocol lets the client obtain the “shares” without the servers
seeing one-another’s messages

 The servers keep but can’t read the secret!

 Question: In what ways is this better than just
encrypting a secret?

CS5412 Spring 2012 (Cloud Computing: Birman)

38

How split secrets work

 They build on a famous result

 With k+1 distinct points you can uniquely identify an order-

k polynomial

 i.e 2 points determine a line

 3 points determine a unique quadratic

 The polynomial is the “secret”

 And the servers themselves have the points – the “shares”

 With coding theory the shares are made just redundant

enough to overcome n-k faults

CS5412 Spring 2012 (Cloud Computing: Birman)

39

Byzantine Broadcast (BB)

 Many classical research results use Byzantine
Agreement to implement a form of fault-tolerant
multicast

 To send a message I initiate “agreement” on that
message

 We end up agreeing on content and ordering w.r.t.
other messages

 Used as a primitive in many published papers

CS5412 Spring 2012 (Cloud Computing: Birman)

40

Pros and cons to BB

 On the positive side, the primitive is very powerful

 For example this is the core of the Castro and Liskov
technique

 But on the negative side, BB is slow

 We’ll see ways of doing fault-tolerant multicast that run at
150,000 small messages per second

 BB: more like 5 or 10 per second

 The right choice for infrequent, very sensitive
actions… but wrong if performance matters

CS5412 Spring 2012 (Cloud Computing: Birman)

41

Take-aways?

 Fault-tolerance matters in many systems
 But we need to agree on what a “fault” is

 Extreme models lead to high costs!

 Common to reduce fault-tolerance to some form of
data or “state” replication
 In this case fault-tolerance is often provided by some form

of broadcast

 Mechanism for detecting faults is also important in many
systems.
 Timeout is common… but can behave inconsistently

 “View change” notification is used in some systems. They typically
implement a fault agreement protocol.

CS5412 Spring 2012 (Cloud Computing: Birman)

42

