CS5412 Spring 2012 (Cloud Computing: Birman) 1

CS5412:
CONSENSUS AND THE FLP
IMPOSSIBILITY RESULT

Lecture Xlli



Generalizing Sam and lJill’s challenge

Recall from last time: Sam and Jill had difficulty
agreeing where to meet for lunch

The central issue was that they never knew for sure if email
was delivered... and always ended up in the “default” case

In general we often see cases in which N processes must
agree upon something

Often reduced to “agreeing on a bit” (0/1)

To make this non-trivial, we assume that processes have an
input and must pick some legitimate input value

Can we implement a fault-tolerant agreement protocol?

CS5412 Spring 2012 (Cloud Computing: Birman)



Connection to consistency

A system behaves consistently if users can’t
distinguish it from a non-distributed system that
supports the same functionality

Many notions of consistency reduce to agreement on
the events that occurred and their order

Could imagine that our “bit” represents
Whether or not a particular event took place
Whether event A is the “next” event

Thus fault-tolerant consensus is deeply related to
fault-tolerant consistency

CS5412 Spring 2012 (Cloud Computing: Birman)



Consensus = Agreement?

For CS5412 we treat these as synonyms

The theoretical distributed systems community has
detailed definitions and for that group, the terms
refer to very similar but not identical problems

Today we'’re “really” focused on Consensus, but
don’t worry about the distinctions

CS5412 Spring 2012 (Cloud Computing: Birman)



Fischer, Lynch and Patterson

A surprising result

Impossibility of Asynchronous Distributed Consensus with
a Single Faulty Process

They prove that no asynchronous algorithm for
agreeing on a one-bit value can guarantee that it
will terminate in the presence of crash faults

And this is true even if no crash actually occurs!

Proof constructs infinite non-terminating runs

CS5412 Spring 2012 (Cloud Computing: Birman)



Core of FLP result

They start by looking at an asynchronous system of N
processes with inputs that are all the same

All O’s must decide O, all 1’s decides 1

They are assume we are given a correct consensus
protocol that will “vote” (somehow) to pick one of the
inputs, e.g. perhaps the majority value
Now they focus on an initial set of inputs with an uncertain
(“bivalent”) outcome (nearly a tie)

For example: N=5 and with a majority of O’s the protocol
picks O, but with a tie, it picks 1. Thus if one of process with
a O happens to fail, the outcome is different than if all vote

CS5412 Spring 2012 (Cloud Computing: Birman)



Core of FLP result

Now they will show that from this bivalent state we
can force the system to do some work and yet still
end up in an equivalent bivalent state

Then they repeat this procedure

Effect is to force the system into an infinite loop!

And it works no matter what correct consensus protocol
you started with. This makes the result very general

CS5412 Spring 2012 (Cloud Computing: Birman)



Bivalent state
=

System
starts in S«
Events can Events can
take it to take it to
state S, state S,
Sooner or later all executions Sooner or later all executions
decide 0 decide 1

CS5412 Spring 2012 (Cloud Computing: Birman)



Bivalent state

9
System
starts in S«
(__ e
Events can Events can
take it to take it to
state S, state S,

CS5412 Spring 2012 (Cloud Computing: Birman)



Bivalent state

10
System
starts in S«
Events can
take it to
) state S,
S«

CS5412 Spring 2012 (Cloud Computing: Birman)



Bivalent state

11
System
starts in S«
Events can
take it to
) state S,
Sl*
e
v
S,

CS5412 Spring 2012 (Cloud Computing: Birman)



Bivalent state
e

System
starts in S«

Events can
take it to
) state S,
Sl*
e
v
S,

CS5412 Spring 2012 (Cloud Computing: Birman)



Core of FLP result in words

In an initially bivalent state, they look at some
execution that would lead to a decision state, say “0”

At some step this run switches from bivalent to univalent,
when some process receives some message m

They now explore executions in which m is delayed

CS5412 Spring 2012 (Cloud Computing: Birman)



Core of FLP result

So:

Initially in a bivalent state
Delivery of m would make us univalent but we delay m

They show that if the protocol is fault-tolerant there must be a run that
leads to the other univalent state

And they show that you can deliver m in this run without a decision being
made

This proves the result: they show that a bivalent system can be
forced to do some work and yet remain in a bivalent state.

If this is true once, it is true as often as we like

In effect: we can delay decisions indefinitely

CS5412 Spring 2012 (Cloud Computing: Birman)



But how did they “really” do it¢

Our picture just gives the basic idea

Their proof actually proves that there is a way to
force the execution to follow this tortured path

But the result is very theoretical...
... to much so for us in CS5412

So we’'ll skip the real details

CS5412 Spring 2012 (Cloud Computing: Birman)



Intuition behind this resulte

Think of a real system trying to agree on something in
which process p plays a key role

But the system is fault-tolerant: if p crashes it adapts
and moves on
Their proof “tricks” the system into thinking p failed

Then they allow p to resume execution, but make the system
believe that perhaps g has failed

The original protocol can only tolerate1 failure, not 2, so it
needs to somehow let p rejoin in order to achieve progress

This takes time... and no real progress occurs

CS5412 Spring 2012 (Cloud Computing: Birman)



But what did “impossibility” mean?

In formal proofs, an algorithm is totally correct if
It computes the right thing

And it always terminates

When we say something is possible, we mean “there is a
totally correct algorithm” solving the problem

FLP proves that any fault-tolerant algorithm solving consensus
has runs that never terminate

These runs are extremely unlikely (“probability zero”)
Yet they imply that we can’t find a totally correct solution

And so “consensus is impossible” ( “not always possible”)

CS5412 Spring 2012 (Cloud Computing: Birman)



How did they pull this off¢

A very clever adversarial attack

They assume they have perfect control over which
messages the system delivers, and when

They can pick the exact state in which a message
arrives in the protocol

They use this ultra-precise control to force the
protocol to loop in the manner we’ve described

In practice, no adversary ever has this much control

CS5412 Spring 2012 (Cloud Computing: Birman)



In the real world?¢

The FLP scenario “could happen”
After all, it is a valid scenario.

... And any valid scenario can happen

But step by step they take actions that are incredibly

unlikely. For many to happen in a row is just impossible
in practice

A “probability zero” sequence of events

Yet in a temporal logic sense, FLP shows that if we can prove
correctness for a consensus protocol, we’ll be unable to

prove it live in a realistic network setting, like a cloud system

CS5412 Spring 2012 (Cloud Computing: Birman)



So...

Fault-tolerant consensus is...
Definitely possible (not even all that hard). Just vote!

And we can prove protocols of this kind correct.

But we can’t prove that they will terminate

If our goal is just a probability-one guarantee, we
actually can offer a proof of progress

But in temporal logic settings we want perfect
guarantees and we can’t achieve that goal

CS5412 Spring 2012 (Cloud Computing: Birman)



Recap

We have an asynchronous model with crash failures
A bit like the real world!

In this model we know how to do some things

Tracking “happens before” & making a consistent snapshot

Later we’'ll find ways to do ordered multicast and implement replicated
data and even solve consensus

But now we also know that there will always be scenarios in
which our solutions can’t make progress
Often can engineer system to make them extremely unlikely

Impossibility doesn’t mean these solutions are wrong — only that they live
within this limit

CS5412 Spring 2012 (Cloud Computing: Birman)



Tougher failure models

We've focused on crash failures

In the synchronous model these look like a “farewell cruel
world” message

Some call it the “failstop model”. A faulty process is viewed
as first saying goodbye, then crashing

What about tougher kinds of failures?
Corrupted messages
Processes that don’t follow the algorithm

Malicious processes out to cause havoc?

CS5412 Spring 2012 (Cloud Computing: Birman)



Here the situation is much harder

Generally we need at least 3f+1 processes in a
system to tolerate f Byzantine failures

For example, to tolerate 1 failure we need 4 or more
processes

We also need f+1 “rounds”

Let’s see why this happens

CS5412 Spring 2012 (Cloud Computing: Birman)



Byzantine scenario

Generals (N of them) surround a city
They communicate by courier
Each has an opinion: “attack” or “wait”
In fact, an attack would succeed: the city will fall.

Waiting will succeed too: the city will surrender.
But if some attack and some wait, disaster ensues

Some Generals (f of them) are traitors... it doesn’t
matter if they attack or wait, but we must prevent
them from disrupting the battle

Traitor can’t forge messages from other Generals

CS5412 Spring 2012 (Cloud Computing: Birman)



Byzantine scenario

Attack!
No, wait!
Surrender!

CS5412 Spring 2012 (Cloud Computing: Birman)



A timeline perspective
i

¥

" Suppose that p and q favor attack, r is a traitor
and s and t favor waiting... assume that in a tie
vote, we attack

CS5412 Spring 2012 (Cloud Computing: Birman)



A timeline perspective

1 After first round collected votes are:

o {attack, attack, wait, wait, traitor’s-vote}

CS5412 Spring 2012 (Cloud Computing: Birman)



What can the traitor do?

Add a legitimate vote of “attack”

Anyone with 3 votes to attack knows the outcome

Add a legitimate vote of “wait”

Vote now favors “wait”
Or send different votes to different folks

Or don’t send a vote, at all, to some

CS5412 Spring 2012 (Cloud Computing: Birman)



Qutcomes?

Traitor simply votes:

Either all see {a,a,a,w,w}

Or all see {a,a,w,w,w}
Traitor double-votes

Some see {a,q0,a,w,w} and some {a,a,w,w,w}
Traitor withholds some vote(s)

Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still
others see {a,a,w,w,w}

Notice that traitor can’t manipulate votes of loyal
Generals!

CS5412 Spring 2012 (Cloud Computing: Birman)



What can we do?

Clearly we can’t decide yet; some loyal Generals
might have contradictory data

In fact if anyone has 3 votes to attack, they can already
“decide”.

Similarly, anyone with just 4 votes can decide
But with 3 votes to “wait” a General isn’t sure (one could be
a traitor...)
So: in round 2, each sends out “witness” messages:
here’s what | saw in round 1

General Smith send me: “attack .cq) smit

CS5412 Spring 2012 (Cloud Computing: Birman)



Digital signatures

These require a cryptographic system
For example, RSA

Each player has a secret (private) key K-' and a public
key K.

She can publish her public key

RSA gives us a single “encrypt” function:
Encrypt(Encrypt(M,K),K-') = Encrypt(Encrypt(M,K1),K) = M
Encrypt a hash of the message to “sign” it

CS5412 Spring 2012 (Cloud Computing: Birman)



With such a system

A can send a message to B that only A could have
sent

A just encrypts the body with her private key
... or one that only B can read
A encrypts it with B’s public key

Or can sign it as proof she sent it

B can recompute the signature and decrypt A’s hashed
sighature to see if they match

These capabilities limit what our traitor can do: he
can’t forge or modify a message

CS5412 Spring 2012 (Cloud Computing: Birman)



A timeline perspective
n

Z\M/

-

s \X
7

1 In second round if ’rhe traitor didn’t behave
identically for all Generals, we can weed out his

faulty votes

CS5412 Spring 2012 (Cloud Computing: Birman)



A timeline perspective

/

/

Attack!!
i Attack!! i
i Attack!! i

1
1

)
k)

y
AR
/

\

Attack!l |

g

1 We attack!

CS5412 Spring 2012 (Cloud Computing: Birman)



Traitor is stymied

Our loyal generals can deduce that the decision was
to attack

Traitor can’t disrupt this...
Either forced to vote legitimately, or is caught

But costs were steep!

(f+1)*n? ,messages!

Rounds can also be slow....
“Early stopping” protocols: min(t+2, f+1) rounds; t is true
number of faults

CS5412 Spring 2012 (Cloud Computing: Birman)



Recent work with Byzantine model

Focus is typically on using it to secure particularly
sensitive, ultra-critical services
For example the “certification authority” that hands out keys
in a domain
Or a database maintaining top-secret data
Researchers have suggested that for such purposes, o
“Byzantine Quorum” approach can work well

They are implementing this in real systems by
simulating rounds using various tricks

CS5412 Spring 2012 (Cloud Computing: Birman)



Byzantine Quorums

Arrange servers into o \'n x \n array
|ldea is that any row or column is a quorum

Then use Byzantine Agreement to access that quorum, doing
a read or a write

Separately, Castro and Liskov have tackled a related
problem, using BA to secure a file server

By keeping BA out of the critical path, can avoid most of the
delay BA normally imposes

CS5412 Spring 2012 (Cloud Computing: Birman)



Split secrets

In fact BA algorithms are just the tip of a broader
“coding theory” iceberg

One exciting idea is called a “split secret”

Idea is to spread a secret among n servers so that any k can
reconstruct the secret, but no individual actually has all the

bits
Protocol lets the client obtain the “shares” without the servers
seeing one-another’s messages

The servers keep but can’t read the secret!

Question: In what ways is this better than just
encrypting a secret?

CS5412 Spring 2012 (Cloud Computing: Birman)



How split secrets work

They build on a famous result

With k+1 distinct points you can uniquely identify an order-
k polynomial
i.e 2 points determine a line

3 points determine a unique quadratic
The polynomial is the “secret”
And the servers themselves have the points — the “shares”

With coding theory the shares are made just redundant
enough to overcome n-k faults

CS5412 Spring 2012 (Cloud Computing: Birman)



Byzantine Broadcast (BB)

Many classical research results use Byzantine
Agreement to implement a form of fault-tolerant
multicast

To send a message | initiate “agreement” on that
message

We end up agreeing on content and ordering w.r.t.
other messages

Used as a primitive in many published papers

CS5412 Spring 2012 (Cloud Computing: Birman)



Pros and cons to BB

On the positive side, the primitive is very powerful

For example this is the core of the Castro and Liskov
technique

But on the negative side, BB is slow

We'll see ways of doing fault-tolerant multicast that run at
150,000 small messages per second

BB: more like 5 or 10 per second

The right choice for infrequent, very sensitive
actions... but wrong if performance matters

CS5412 Spring 2012 (Cloud Computing: Birman)



Take-awayse

Fault-tolerance matters in many systems
But we need to agree on what a “fault” is
Extreme models lead to high costs!

Common to reduce fault-tolerance to some form of
data or “state” replication

In this case fault-tolerance is often provided by some form
of broadcast

Mechanism for detecting faults is also important in many
systems.
Timeout is common... but can behave inconsistently

“View change” notification is used in some systems. They typically
implement a fault agreement protocol.

CS5412 Spring 2012 (Cloud Computing: Birman)



