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Generalizing Sam and Jill’s challenge 

 Recall from last time: Sam and Jill had difficulty 

agreeing where to meet for lunch 

 The central issue was that they never knew for sure if email 

was delivered... and always ended up in the “default” case 

 In general we often see cases in which N processes must 

agree upon something 

 Often reduced to “agreeing on a bit” (0/1) 

 To make this non-trivial, we assume that processes have an 

input and must pick some legitimate input value 

 Can we implement a fault-tolerant agreement protocol? 
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Connection to consistency 

 A system behaves consistently if users can’t 
distinguish it from a non-distributed system that 
supports the same functionality 

 Many notions of consistency reduce to agreement on 
the events that occurred and their order 

 Could imagine that our “bit” represents 

 Whether or not a particular event took place 

 Whether event A is the “next” event 

 Thus fault-tolerant consensus is deeply related to 
fault-tolerant consistency 
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Consensus  Agreement? 
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 For CS5412 we treat these as synonyms 

 

 The theoretical distributed systems community has 

detailed definitions and for that group, the terms 

refer to very similar but not identical problems 

 

 Today we’re “really” focused on Consensus, but 

don’t worry about the distinctions 



Fischer, Lynch and Patterson  

CS5412 Spring 2012 (Cloud Computing: Birman) 

5 

 A surprising result 

 Impossibility of Asynchronous Distributed Consensus with 

a Single Faulty Process 

 They prove that no asynchronous algorithm for 

agreeing on a one-bit value can guarantee that it 

will terminate in the presence of crash faults 

 And this is true even if no crash actually occurs! 

 Proof constructs infinite non-terminating runs 



Core of FLP result 
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 They start by looking at an asynchronous system of N 
processes with inputs that are all the same 

 All 0’s must decide 0, all 1’s decides 1 

 They are assume we are given a correct consensus 
protocol that will “vote” (somehow) to pick one of the 
inputs, e.g. perhaps the majority value 

 Now they focus on an initial set of inputs with an uncertain 
(“bivalent”) outcome (nearly a tie) 

 For example: N=5 and with a majority of 0’s the protocol 
picks 0, but with a tie, it picks 1.  Thus if one of process with 
a 0 happens to fail, the outcome is different than if all vote 



Core of FLP result 
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 Now they will show that from this bivalent state we 

can force the system to do some work and yet still 

end up in an equivalent bivalent state 

 

 Then they repeat this procedure 

 

 Effect is to force the system into an infinite loop! 

 And it works no matter what correct consensus protocol 

you started with.  This makes the result very general 



Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S* denotes bivalent state 

S0 denotes a decision 0 state 

S1 denotes a decision 1 state 

Sooner or later all executions 
decide 0 

Sooner or later all executions 
decide 1 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

e 

e is a critical event that takes 

us from a bivalent to a 

univalent state: eventually 

we’ll “decide” 0 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

They delay e and show that 

there is a situation in which the 

system will return to a bivalent 

state 

S’* 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S’* 

In this new state they show that 

we can deliver e and that now, 

the new state will still be 

bivalent! 

S’’* 

e 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S’* 

Notice that we made the system 

do some work and yet it ended 

up back in an “uncertain” state.  

We can do this again and again 

S’’* 

e 
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Core of FLP result in words 

 In an initially bivalent state, they look at some 

execution that would lead to a decision state, say “0” 

 At some step this run switches from bivalent to univalent, 

when some process receives some message m 

 They now explore executions in which m is delayed 
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Core of FLP result 

 So: 

 Initially in a bivalent state 

 Delivery of m would make us univalent but we delay m 

 They show that if the protocol is fault-tolerant there must be a run that 
leads to the other univalent state 

 And they show that you can deliver m in this run without a decision being 
made 

 This proves the result: they show that a bivalent system can be 
forced to do some work and yet remain in a bivalent state. 

 If this is true once, it is true as often as we like 

 In effect: we can delay decisions indefinitely 
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But how did they “really” do it? 

 Our picture just gives the basic idea 

 Their proof actually proves that there is a way to 

force the execution to follow this tortured path 

 But the result is very theoretical… 

 … to much so for us in CS5412 

 So we’ll skip the real details 
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Intuition behind this result? 

 Think of a real system trying to agree on something in 
which process p plays a key role 

 But the system is fault-tolerant: if p crashes it adapts 
and moves on 

 Their proof “tricks” the system into thinking p failed 

 Then they allow p to resume execution, but make the system 
believe that perhaps q has failed 

 The original protocol can only tolerate1 failure, not 2, so it 
needs to somehow let p rejoin in order to achieve progress 

 This takes time… and no real progress occurs 
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But what did “impossibility” mean? 

 In formal proofs, an algorithm is totally correct if 

 It computes the right thing 

 And it always terminates 

 When we say something is possible, we mean “there is a 
totally correct algorithm” solving the problem 

 FLP proves that any fault-tolerant algorithm solving consensus 
has runs that never terminate 

 These runs are extremely unlikely (“probability zero”) 

 Yet they imply that we can’t find a totally correct solution 

 And so “consensus is impossible” ( “not always possible”) 
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How did they pull this off? 
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 A very clever adversarial attack 

 They assume they have perfect control over which 
messages the system delivers, and when 

 They can pick the exact state in which a message 
arrives in the protocol 

 

 They use this ultra-precise control to force the 
protocol to loop in the manner we’ve described 

 

 In practice, no adversary ever has this much control 



In the real world? 
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 The FLP scenario “could happen” 

 After all, it is a valid scenario.   

 ... And any valid scenario can happen 

 

 But step by step they take actions that are incredibly 
unlikely.  For many to happen in a row is just impossible 
in practice 

 A “probability zero” sequence of events 

 Yet in a temporal logic sense, FLP shows that if we can prove 
correctness for a consensus protocol, we’ll be unable to 
prove it live in a realistic network setting, like a cloud system 

 

 



So... 
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 Fault-tolerant consensus is... 

 Definitely possible (not even all that hard).  Just vote! 

 And we can prove protocols of this kind correct. 

 

 But we can’t prove that they will terminate 

 If our goal is just a probability-one guarantee, we 

actually can offer a proof of progress 

 But in temporal logic settings we want perfect 

guarantees and we can’t achieve that goal 



Recap 

 We have an asynchronous model with crash failures 

 A bit like the real world! 

 In this model we know how to do some things 

 Tracking “happens before” & making a consistent snapshot 

 Later we’ll find ways to do ordered multicast and implement replicated 
data and even solve consensus 

 But now we also know that there will always be scenarios in 
which our solutions can’t make progress 

 Often can engineer system to make them extremely unlikely 

 Impossibility doesn’t mean these solutions are wrong – only that they live 
within this limit   
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Tougher failure models 

 We’ve focused on crash failures 

 In the synchronous model these look like a “farewell cruel 

world” message 

 Some call it the “failstop model”.  A faulty process is viewed 

as first saying goodbye, then crashing 

 What about tougher kinds of failures? 

 Corrupted messages 

 Processes that don’t follow the algorithm 

 Malicious processes out to cause havoc? 
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Here the situation is much harder 

 Generally we need at least 3f+1 processes in a 

system to tolerate f Byzantine failures 

 For example, to tolerate 1 failure we need 4 or more 

processes 

 We also need f+1 “rounds” 

 Let’s see why this happens 
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Byzantine scenario 

 Generals (N of them) surround a city 
 They communicate by courier 

 Each has an opinion: “attack” or “wait” 
 In fact, an attack would succeed: the city will fall. 

 Waiting will succeed too: the city will surrender.   

 But if some attack and some wait, disaster ensues 

 Some Generals (f of them) are traitors… it doesn’t 
matter if they attack or wait, but we must prevent 
them from disrupting the battle 
 Traitor can’t forge messages from other Generals 
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Byzantine scenario 

Attack! 

Wait… 

Attack! 

Attack!  

No, wait!  

Surrender! 

Wait… 
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A timeline perspective 

 

 

 

 

 

 Suppose that p and q favor attack, r is a traitor 
and s and t favor waiting… assume that in a tie 
vote, we attack 

p 

q 

r 

s 

t 
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A timeline perspective 

 

 

 

 

 

 After first round collected votes are: 

 {attack, attack, wait, wait, traitor’s-vote} 

p 

q 

r 

s 

t 

CS5412 Spring 2012 (Cloud Computing: Birman) 

27 



What can the traitor do? 

 Add a legitimate vote of “attack” 

 Anyone with 3 votes to attack knows the outcome 

 Add a legitimate vote of “wait” 

 Vote now favors “wait” 

 Or send different votes to different folks 

 Or don’t send a vote, at all, to some 
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Outcomes? 

 Traitor simply votes: 
 Either all see {a,a,a,w,w} 

 Or all see {a,a,w,w,w} 

 Traitor double-votes 
 Some see {a,a,a,w,w} and some {a,a,w,w,w} 

 Traitor withholds some vote(s) 
 Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still 

others see {a,a,w,w,w} 

 Notice that traitor can’t manipulate votes of loyal 
Generals! 
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What can we do? 

 Clearly we can’t decide yet; some loyal Generals 
might have contradictory data 

 In fact if anyone has 3 votes to attack, they can already 
“decide”. 

 Similarly, anyone with just 4 votes can decide 

 But with 3 votes to “wait” a General isn’t sure (one could be 
a traitor…) 

 So: in round 2, each sends out “witness” messages: 
here’s what I saw in round 1 

 General Smith send me: “attack(signed) Smith” 
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Digital signatures 

 These require a cryptographic system 

 For example, RSA 

 Each player has a secret (private) key K-1 and a public 
key K.   

 She can publish her public key 

 RSA gives us a single “encrypt” function: 

 Encrypt(Encrypt(M,K),K-1) = Encrypt(Encrypt(M,K-1),K) = M 

 Encrypt a hash of the message to “sign” it 
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With such a system 

 A can send a message to B that only A could have 
sent 
 A just encrypts the body with her private key 

 … or one that only B can read 
 A encrypts it with B’s public key 

 Or can sign it as proof she sent it 
 B can recompute the signature and decrypt A’s hashed 

signature to see if they match 

 These capabilities limit what our traitor can do: he 
can’t forge or modify a message 

CS5412 Spring 2012 (Cloud Computing: Birman) 

32 



A timeline perspective 

 

 

 

 

 

 In second round if the traitor didn’t behave 
identically for all Generals, we can weed out his 
faulty votes 

p 

q 

r 

s 

t 
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A timeline perspective 

 

 

 

 

 

 We attack! 

p 

q 

r 

s 

t 

Attack!! 

Attack!! 

Attack!! 

Attack!! 

Damn!  They’re on to me 
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Traitor is stymied 

 Our loyal generals can deduce that the decision was 

to attack 

 Traitor can’t disrupt this… 

 Either forced to vote legitimately, or is caught 

 But costs were steep! 

 (f+1)*n2 ,messages! 

 Rounds can also be slow…. 

 “Early stopping” protocols: min(t+2, f+1) rounds; t is true 

number of faults 
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Recent work with Byzantine model 

 Focus is typically on using it to secure particularly 
sensitive, ultra-critical services 

 For example the “certification authority” that hands out keys 
in a domain 

 Or a database maintaining top-secret data 

 Researchers have suggested that for such purposes, a 
“Byzantine Quorum” approach can work well 

 They are implementing this in real systems by 
simulating rounds using various tricks 
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Byzantine Quorums 

 Arrange servers into a  n x n array 

 Idea is that any row or column is a quorum 

 Then use Byzantine Agreement to access that quorum, doing 

a read or a write 

 Separately, Castro and Liskov have tackled a related 

problem, using BA to secure a file server 

 By keeping BA out of the critical path, can avoid most of the 

delay BA normally imposes 
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Split secrets 

 In fact BA algorithms are just the tip of a broader 
“coding theory” iceberg 

 One exciting idea is called a “split secret” 
 Idea is to spread a secret among n servers so that any k can 

reconstruct the secret, but no individual actually has all the 
bits 

 Protocol lets the client obtain the “shares” without the servers 
seeing one-another’s messages 

 The servers keep but can’t read the secret!  

 Question: In what ways is this better than just 
encrypting a secret? 
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How split secrets work 

 They build on a famous result 

 With k+1 distinct points you can uniquely identify an order-

k polynomial 

 i.e 2 points determine a line 

 3 points determine a unique quadratic 

 The polynomial is the “secret” 

 And the servers themselves have the points – the “shares” 

 With coding theory the shares are made just redundant 

enough to overcome n-k faults 
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Byzantine Broadcast (BB) 

 Many classical research results use Byzantine 
Agreement to implement a form of fault-tolerant 
multicast 

 To send a message I initiate “agreement” on that 
message 

 We end up agreeing on content and ordering w.r.t. 
other messages 

 Used as a primitive in many published papers 
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Pros and cons to BB 

 On the positive side, the primitive is very powerful 

 For example this is the core of the Castro and Liskov 
technique 

 But on the negative side, BB is slow 

 We’ll see ways of doing fault-tolerant multicast that run at 
150,000 small messages per second 

 BB: more like 5 or 10 per second 

 The right choice for infrequent, very sensitive 
actions… but wrong if performance matters 
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Take-aways? 

 Fault-tolerance matters in many systems 
 But we need to agree on what a “fault” is 

 Extreme models lead to high costs! 

 Common to reduce fault-tolerance to some form of 
data or “state” replication 
 In this case fault-tolerance is often provided by some form 

of broadcast 

 Mechanism for detecting faults is also important in many 
systems.   
 Timeout is common… but can behave inconsistently   

 “View change” notification is used in some systems.  They typically 
implement a fault agreement protocol. 
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