
1

7: Network Security 1

16:
Exploits and Defenses Up and
Down the Stack

Last Modified:
4/15/2003 9:11:20 PM

Some slides based on notes from cs515 at
UMass 7: Network Security 2

Where in the stack is security?

❒ Attacks can be targeted at any layer of the
protocol stack

❍ Application layer: Password and data sniffing, Forged
transactions, Security holes, Buffer Overflows?

❍ Transport Layer: TCP Session Stealing,
❍ Network Layer: IP Spoofing, False Dynamic Routing

Updates, ICMP attacks
❍ Link Layer: ARP attacks
❍ Denial of Service, Intrusion

❒ Defenses can be implemented at multiple levels of
the protocol stack too

❍ Application Layer: PGP
❍ Transport Layer: SSL
❍ Network Layer: Ipsec
❍ Link Layer: Static ARP tables, Physical security

7: Network Security 3

Application Layer Network
Security
❒ Many applications are designed with

HUGE security problems
❒ On purpose?

❍ No! many common applications designed when
the goal was just to get it to work (security
complicates that)

❍ Sometimes the cure is worse than the problem
❍ But some applications are bad enough that it

makes you wonder

7: Network Security 4

Clear Text Passwords

❒ We saw many application level protocols
where sending your password in the clear is
required by the protocol
❍ FTP, TELNET, POP, News

❒ Attack: packet sniffing can capture
passwords

❒ Defenses:
❍ Replace these applications with ones that do

not send the password in the clear
❍ Switched Networks and Physical Security of

Backbone networks

7: Network Security 5

Rsh and rcp

❒ Rsh and rcp are especially bad
❒ rsh and rcp use the .rhosts file in your directory,

which lists hosts and accounts to allows access
from without a password.

❒ Example .rhosts file:
mymachine.cs.cornell.edu jnm
*.cs.cornell.edu jnm
* *

❒ Now that we know a machine is running rsh, all we
need to do is pretend to be another machine in
order to gain access?

❍ We’ll get to IP Spoofing a bit later

7: Network Security 6

Ssh

❒ Program for logging into a remote machine
and executing commands there

❒ Replaces telnet, rlogin and rsh
❒ Provides encrypted communications

between two hosts over an insecure
network

❒ It does not use authenticate users – still
uses the same authentication methods as
telnet etc but encrypts the exchange

2

7: Network Security 7

Connection Establishment

❒ Clients connect to an SSH server on port
22

❒ The two sides negotiate an encryption
algorithm to be used and exchange keys
❍ Each side will have a preferred algorithm and

possibly alternate algorithms
❍ Send key for preferred algorithm
❍ If preferred algorithm is rejected then will

send keys for another algorithm if accepted

7: Network Security 8

Data Exchange

❒ Once connection is accepted (each side
authenticated), then a session key is
exchanged

❒ Each packet of data sent over this
encrypted connection includes a packet
sequence number so that replay attempts
are thwarted

7: Network Security 9

Identifying the Server?

❒ How does the client know they are talking
to the server they think?

❒ Client maintains a list of the public_keys
for all hosts they have ever spoken with
(e.g. in ~/.ssh/known_hosts)

❒ When contact server, server tells client its
public key, client must choose to accept or
reject the first time

❒ From then on if doesn’t match will warn
user

7: Network Security 10

Secure Email?

❒ Attacks
❍ Forged mail?
❍ Mail goes in clear text?

7: Network Security 11

Secure e-mail

• generates random symmetric private key, KS.
• encrypts message with KS
• also encrypts KS with Bob’s public key.
• sends both KS(m) and eB(KS) to Bob.

• Alice wants to send secret e-mail message, m, to Bob.

7: Network Security 12

Secure e-mail (continued)
•Alice wants to provide sender authentication
message integrity.

• Alice digitally signs message.
• sends both message (in the clear) and digital signature.

3

7: Network Security 13

Secure e-mail (continued)

•Alice wants to provide secrecy, sender authentication,
message integrity.

Note: Alice uses both her private key, Bob’s public
key.

7: Network Security 14

Pretty good privacy (PGP)

❒ Internet e-mail encryption
scheme, a de-facto
standard.

❒ Uses symmetric key
cryptography, public key
cryptography, hash
function, and digital
signature as described.

❒ Provides secrecy, sender
authentication, integrity.

❒ Inventor, Phil Zimmerman,
was target of 3-year
federal investigation.

---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1

Bob:My husband is out of town
tonight.Passionately yours,
Alice

---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJ

hFEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---

A PGP signed message:

7: Network Security 15

Distributed Trust

❒ Don’t need to trust a certificate authority
or key distribution center?!

❒ Users get others they know to sign their
public key indicating that they know this
person and this public key really go
together

❒ Users can collect this supporting evidence
of their public key

❒ Users can also collect certificates of
others public keys into a “key ring”

7: Network Security 16

PGP key rings

❒ Allows arbitrary chains of certificates
❒ PGP software allows users to examine all

“evidence” of someones public key
❍ Users might require several certificates from

people they don’t know well to trust a key or
just one certificate from people they know well

❒ If receive a message from x, search key
ring for a public key you trust to use in
decrypting the message

7: Network Security 17

Transport Layer Network
Security

❒ TCP will accept a segment with an
acceptable IP address, port number and
sequence number
❍ Forging the IP address part isn’t hard
❍ Port Number and Sequence number you can

definitely get if you are using a packet sniffer
❍ Port number and sequence number are also

pretty predictable
❒ All this means an attacker has a good

chance of inserting data into a TCP stream

7: Network Security 18

What might an attacker insert
into an ongoing TCP stream?
❒ RST or FIN would kill the connection

(denial of service)
❒ Worse if you know how the stream is

interpreted on the other side you could
add in data
❍ Telnet is an example of this because it is just

echoing key strokes
❍ If hijack a telnet session could insert any

command you want (rm * ?!)

4

7: Network Security 19

Access beyond life of telnet
connection
❒ Attacker can insert commands into the

remote account. E.g.
❍ echo “* attacker” > .rhosts

❒ Clients connection not dropped so client
might not even know!

❒ However, commands entered by the
attacker might appear on a command line
history.

7: Network Security 20

Defenses

❒ Switched networks and physical security of
the back bone links
❍ Good idea to do yes but to easy for someone to

plug into network somewhere
❒ Run applications that encrypt the data

stream
❍ Hijacking ssh session vs telnet
❍ Can still interupt stream but harder to take it

over to do something active
❒ Secure Socket layer

7: Network Security 21

Secure sockets layer (SSL)

❒ SSL works at transport
layer. Provides security to
any TCP-based app using
SSL services.

❒ SSL: used between WWW
browsers, servers for
ecommerce (https).

❒ SSL security services:
❍ server authentication
❍ data encryption
❍ client authentication

(optional)

❒ Server authentication:
❍ SSL-enabled browser

includes public keys for
trusted CAs.

❍ Browser requests server
certificate, issued by
trusted CA.

❍ Browser uses CA’s public
key to extract server’s
public key from
certificate.

❒ Visit your browser’s
security menu to see its
trusted CAs.

7: Network Security 22

HTTPS

Encrypted SSL session:
❒ Browser generates

symmetric session key,
encrypts it with server’s
public key (from CA), sends
encrypted key to server.

❒ Using its private key, server
decrypts session key.

❒ Browser, server agree that
future msgs will be
encrypted.

❒ All data sent into TCP
socket (by client or server)
is encrypted with session
key.

❒ SSL: basis of IETF Transport
Layer Security (TLS).

❒ SSL can be used for non-Web
applications, e.g., IMAP.

❒ Client authentication can be
done with client certificates.

❒ encrypt in the public key
given by server and send

❒ Server can decrypt using
private key

7: Network Security 23

Network Layer Security

❒ Lots of potential problems at the IP layer
❍ In Dynamic Routing Protocols, routers exchange

messages containing known route information to
reach consensus on the best routes through the
system – any validation of these messages?

❍ No authentication that a packet came from a
machine with the IP address listed in the
source field (Raw IP Interface)

7: Network Security 24

False Dynamic Routing Updates
❒ Attacker injects a RIP update stating she has a

path to a particular unused host or network
❒ All subsequent packets will be routed to her.
❒ She replies with raw IP packets listing the IP

address of the unused host concealing her identity

❒ Similar attacks for interdomain routing.
❒ Also allows a man in the middle attack and denial

of service attacks
❍ Could instead listen/forward or modify incoming packets.
❍ Bad routing tables make a routing black hole where

legitimate traffic does not reach

5

7: Network Security 25

ICMP Attack

❒ Simply, send an ICMP redirect
❍ Forces a machine to route through you.

❒ Send destination unreachable spoofed
from the gateway

❒ Constantly send ICMP source squelches.

7: Network Security 26

IP Spoofing
❒ can generate “raw” IP packets directly from

application, putting any value into IP source
address field

❒ receiver can’t tell if source is spoofed
❒ e.g.: C pretends to be B

A

B

C

src:B dest:A payload

7: Network Security 27

Defenses against IP spoofing

❒ Good for routers not to forward datagrams
with IP addresses not in their network

❒ Doesn’t help attacks from local networks
❒ Really need authentication based on more

than IP address
❍ Remember authentication using crptography

7: Network Security 28

Ipsec: Network Layer Security
❒ Network-layer secrecy:

❍ sending host encrypts the
data in IP datagram

❍ TCP and UDP segments;
ICMP and SNMP
messages.

❒ Network-layer authentication
❍ destination host can

authenticate source IP
address

❒ Two principle protocols:
❍ authentication header

(AH) protocol
❍ encapsulation security

payload (ESP) protocol

❒ For both AH and ESP, source,
destination handshake:

❍ create network-layer
logical channel called a
service agreement (SA)

❒ Each SA unidirectional.
❒ Uniquely determined by:

❍ security protocol (AH or
ESP)

❍ source IP address
❍ 32-bit connection ID

7: Network Security 29

Authentication Header (AH) Protocol

❒ Provides source host
authentication, data
integrity, but not secrecy.

❒ AH header inserted
between IP header and IP
data field.

❒ Protocol field = 51.
❒ Intermediate routers

process datagrams as usual.

AH header includes:
❒ connection identifier
❒ authentication data: signed

message digest, calculated
over original IP datagram,
providing source
authentication, data integrity.

❒ Next header field: specifies
type of data (TCP, UDP, ICMP,
etc.) in plain text

7: Network Security 30

ESP Protocol
❒ Provides secrecy, host

authentication, data integrity.
❒ Data, ESP trailer encrypted.
❒ Next header field is in ESP

header.

❒ ESP authentication
field is similar to AH
authentication field.

❒ Protocol = 50.

6

7: Network Security 31

ARP Attacks

❒ When a machines sends an ARP request out, you
could answer that you own the address.

❍ But in a race condition with the real machine.
❒ Unfortunately, ARP will just accept replies without

requests!
❒ Just send a spoofed reply message saying your

MAC address owns a certain IP address.
❍ Repeat frequently so that other machine’s caches don’t

timeout and send query

❒ Messages are routed through you to sniff or
modify or squelch

7: Network Security 32

ARP Spoofing -
Countermeasures
❒ “Publish” MAC address of router/default gateway

and trusted hosts to prevent ARP spoof.

Statically defining the IP to Ethernet address
mapping prevents someone from fooling the host
into sending network traffic to a host
masquerading as the router or another host via an
ARP spoof.

Example: arp -s hostname 00:01:02:03:04:ab pub
❒ Other than that, hard to defend from attack on

your own LAN

7: Network Security 33

Other common attacks

7: Network Security 34

SYN Flooding DoS

❒ Pick a machine, any machine.
❒ Spoof packets to it (so you don’t get caught)
❒ Each packet is a the first hand of the 3-way

handshake of TCP: send a SYN packet.
❒ Send lots of SYN packets.
❒ Each SYN packet received causes a buffer to be

allocated, and the limits of the listen()call to
be reached.

❒ Worse yet compromise many machines and then
have them all attack the victim

7: Network Security 35

Buffer Overflows

❒ Program buffer overflows are the most
common form of security vulnerability; in
fact they dominate.

❒ 9 of 13 CERT advisories from 1998
❒ Half of CERT advisories from 1999

❒ Two have a buffer overflow, you need two
things
❍ Arrange for root-grabbing code to be available

in the program’s address space
❍ Get the program to jump to that code.

7: Network Security 36

Processes in memory

❒ Process state in memory consists of several items:
❍ the code for running the program
❍ the static data for the running program
❍ space for dynamic data (the heap) and the heap pointer

(hp)
❍ the program counter (PC), indicating the next instruction
❍ an execution stack with the program’s function call chain

(the stack)
❍ values of CPU registers
❍ a set of OS resources in use; e.g., open files
❍ process execution state (ready, running, waiting, etc)

7

7: Network Security 37

Processes in Memory

❒ We need consider only four regions in
memory:
❍ static data: pre-allocation memory (int

array[9];)
❍ text: instructions and read-only data
❍ heap: re-sizeable portion containing data

malloc()’d and free()’d by the user.

❍ Stack: a push and pop data structure.
Used to allocate local variables used in
functions, pass variables, and return values
from function calls.

7: Network Security 38

Calling a function

❒ The stack consists of a logical stack of frames.
❒ Frames are the parameters given to a function,

local variables, and data used to pop back up to the
previous frame (like which instruction to go back
to).

❒ Each frame in the stack looks like this:

breturn
addr

Saved frame
pointerLocal vars

7: Network Security 39

Buffer Overrun =Seg fault

❒ In memory, if you read data into a buffer,
you might write over other variables
necessary for program execution.

❒ Normally this results in a seg fault.

input[256];
buffer[16];
strcpy(buffer, input);

7: Network Security 40

Careful Buffer Overrun =
Attack
❒ When you read in too many characters into a

buffer, you can modify the rest of the stack,
altering the flow of the program.

❒ Normally, writing over array bounds causes a seg
fault as you’ll actually overwrite into other
variables in the program.

❒ If you are careful about what you overwrite, then
you can alter what the program does next without
stepping far enough to cause a seg fault.

7: Network Security 41

Smashing the Stack

❒ If buffer[] gets its input from the command line, and
the input is longer than the allocated memory, the
program will write into the return address

❒ If you do it perfectly, you can write into the RA the
memory location of your input.

❒ When your function completes, it will execute next
the first command in your input.

b
return
addr

Saved frame
pointerBuffer[30]

Execve(“/bin/sh/”); return 0xd1

7: Network Security 42

❒ Fingerd takes input about whom to finger without
checking input size.

❒ Morris wrote the following code after the buffer
overflow to create the morris worm:

pushl $68732f ‘/sh\0’
pushl $6e69622f ‘/bin’ upon return to main()
movl sp,r10 execve(“/bin/sh”,0,0);
pushl $0 was executed, opening a
pushl $0 shell on the remote.
pushl r10 machine.
pushl $3
movl sp,ap
chmk $3b

Buffer overflow over the net:
Morris Worm

8

7: Network Security 43

Defenses

❒ How do you avoid this exploit?
❒ Use a language with garbage collection and input

will never be able to smash the stack. (i.e., java,
lisp, etc)

❒ Use input functions carefully.
❒ Don’t use strcpy(), strcat(), sprintf(), gets().
❒ Use instead strncpy(3), strncat(3), snprintf(3),

and fgets(3) .
❒ There are other problematic constructs:

fscanf(3), scanf(3), vsprintf(3), realpath(3),
getopt(3), getpass(3), streadd(3), strecpy(3), and
strtrns(3).

7: Network Security 44

Security Beyond the Stack

❒ We just thought about exploits and
defenses up and down the protocol stack
and a couple places in between

❒ Important to remember that lots of
exploits have nothing to do with the
network technologies

❒ If you really want to defend something,
defenses must do well beyond the protocol
stack

7: Network Security 45

Physical Security

❒ Are you sure someone can just walk into your
building and

❍ Steal floppies or CD-ROMs that are lying around?
❍ Bring in a laptop and plug into your dhcp-enable ethernet

jacks?
❍ Reboot your computer into single user mode? (using a

bios password?)
❍ Reboot your computer with a live CD-ROM and mount the

drives?
❍ Sit down at an unlocked screen?

❒ Can anyone sit down outside your building and get
on your DHCP-enable 802.11 network?

7: Network Security 46

Social Engineering

❒ Using tricks and lies that take advantage of
people’s trust to gain access to an otherwise
guarded system.

❍ Social Engineering by Phone: “Hi this is your visa credit
card company. We have a charge for $3500 that we
would like to verify. But, to be sure it’s you, please tell
me your social security number, pin, mother’s maiden
name, etc”

❍ Dumpster Diving: collecting company info by searching
through trash.

❍ Online: “hi this is Alice from my other email account on
yahoo. I believe someone broke into my account, can you
please change the password to “Sucker”?

❍ Persuasion: Showing up in a FedEx or police uniform, etc.
❍ Bribery/Threats

7: Network Security 47

Security: Putting It In
Perspective
❒ How do we manage the security of a valued

resource?
1. Risk assessment: the value of a resource should

determine how much effort (or money) is spent
protecting it.
• E.g., If you have nothing in your house of value do you

need to lock your doors other than to protect the
house itself?

• If you have an $16,000,000 artwork, you might
consider a security guard. (can you trust the guard?)

2. Policy: define who *should* have access to each
resource and to what degree.

7: Network Security 48

Security: Putting it In
Perspective

3. Prevention: taking measures that prevent
unauthorized access or damage.
• E.g., passwords, physical security, firewalls or one-

time passwords
4. Detection: measures that allow detection of

unauthorized access (when an asset has been
damaged, altered, or copied).
• E.g., intrusion detection, trip wire, network forensic

5. Recovery: restoring systems that were
compromised; patch holes.

6. Response/Punishment: measures that deter
unathorized access not through prevention but
through threat of consequences in detected

9

7: Network Security 49

Outtakes

7: Network Security 50

Secure as the real world

❒ The more you think about security the
more you realize how many holes there are

❒ A good rule of thumb is to work to make
things as secure as the real world

7: Network Security 51

TODO

❒ Diffie Hellman
❍ Suseptible to man in the middle

❒ Kerberos
❍ Central authorities have long term associations

with all communicating parties

7: Network Security 52

The Security Process

❒ Security is an on-going
process between these
three steps.

❒ Moreover, most
security research can
be categorized within
these three topics.

Prevention

Detection

Response

❒ Prevention: firewalls and filtering, secure
shell, anonymous protocols

❒ Detection: intrusion detection, IP traceback
❒ Response: dynamic firewall rule sets,

employee education (post-its are bad)

7: Network Security 53

More 3-faceted views of
Security
❒ Security of an organization consists of

❍ Computer and Network Security
• Everything that we will learn about in this class
• Firewalls, IDS, virus protection, ssh, passwords, etc.

❍ Process security
• Protected by good policy!
• No one should be able to get an account by phone: a form

should be filled out, an email/phone call sent to a manager,
and then the password picked up in person. Don’t send
notifications after accounts are set up!

• http://www.nstissc.gov/html/library.html
❍ Physical security

• Protected by alarm systems, cameras, and mean dogs.
• Are you sure someone can’t just steal the hard drive?

