15:

NetworkSecurity Basics

Last Modified:

4/21/2003 8:30:27 PMM

Importance of Network

Security?

\square Think about...
O The most private, embarrassing or valuable piece of information you've ever stored on a computer
O How much you rely on computer systems to be available when you need them
OThe degree to which you question whether a piece of email really came from the person listed in the From field

- How convenient it is to be able to access private information online (e.g. buy without entering all data, look up your transcript without requesting a copy,...)

Importance of Network.
 Security

\square Society is becoming increasingly reliant on the correct and secure functioning of computer systems

- Medical records, financial transactions, etc.
\square It is our jobs as professionalcomputer scientists:
- To evaluate the systems we use to understand their weaknesses
OTo educate ourselves and others to be wise ne twork consumers
O To design networked systems that are secure

Fundamentals of Defense

\square What can we do about it?
\square Restricted Access

- Restrict physicalaccess, close networkports, isolate from the Internet, fire walls, $\mathfrak{N} \mathfrak{A T}$ gate ways, switched networks
\square Monitoring
- Know what normal is and watch for deviations
$\square \mathcal{H e}$ terogeneity/Randomness
- Variety of Implementations, Random sequence numbers, Random port numbers
\square Cryptograpfy....

Cryptograpfy

\square The most widely used tool for securing
information and services is cryptograpfy.
\square Cryptography relies on cipfiers: mathematical functions used for encryption and decryption of a message.

- Encryption: the process of disguising a message in sucha way as to fide its substance.
- Ciphertext: an encrypted message
- Decryption: the process of returning an encrypted message backinto plaintext.

What makes a good cipher?

substitution cipher: substituting one thing for another
O monoalphabetic cipher: substitute one letter for another
plaintext: abcdefghijklmnopqrstuvwxyz,

```
        E.g.: Plaintext: bob. i love you. alice
            ciphertext: nkn. s gktc wky. mgsbc
Q: How frard to break this simple cipfuer?:
    \bullet brute force (fow hard?)
    -other?
```


Ciphers

\square The security of a cipher (iike a substitution cipher) may rest in the secrecy of its restricted algorithm.
O Whenever a user le aves a group, the algoritfim must change.

- Can't be scrutinized by people smarter than you. - But, secrecy is a popular approach:(
\square Modern cryptography relies on secret Keys, a selected value from a large set (a Keyspace), e.g., a 1024-6it number. 2^{1024} values!
O Security is based on secrecy of the key, not the details of the algorithm.
- Change of authorized participants requires only a change in key.

Keys: Symmetric vs Assymetric

\square The most common cryptographic tools are

- Symmetrickey ciphers
- Use same key to encrypt and decrypt
- One key shared and kept secret
- $\mathcal{D E S}, 3 \mathcal{D E S}, \mathfrak{A E S}$, Blowf is h, \mathcal{T} wof is $\mathfrak{h}, I \mathcal{D E A}$
- Fast and simple (Gased on addition, masks, and shifts)
- Typical key lengtiss are $40,128,256,512$
- Asymmetric key ciphers
- Pair of keys: one encrypts and another decrpyts
- One key (the private key) must be kept secret; the other
key (the public key) can be freely disclosed
- RSA, El Gamal
- Slow, 6 ut versatile (usually requires exponentiation)
- Typical key lengths are 512,1024,2048

Symmetric keycrypto: DES

Public key encryption algoritfims

DES: Data Encryption Standard

- US encryption standard [\mathcal{N} IS T 1993]
$\square 56$-6it symmetric key, 64 6it plaintext input
- initial permutation
- 16 identical "rounds" of function application, e ach using different 48 bits of key
- final permutation
$\square \mathcal{H}$ ow secure is $\mathcal{D E S}$?
- DES Challenge: 56-6it-Key-encrypted phrase decrypted (6rute force) in a little over 22 fours (1999 DES Challenge III)
- no known "backdoor" decryption approach
\square making $\mathcal{D E S}$ more secure
O use three keys sequentially (3-DES) oneach datum
- use cipher-block chaining

$\underline{R S A}$

\square Ronald L. Rivest, Adi Shamir and Leonard \mathcal{M}. Adle man

- Won 2002 Turing award for this work!
- Want a function $e_{\mathcal{B}}$ that is easy to do, but fiard to undo without a specialdecryption key
\square Based on the difficulty of factoring large numbers (especially ones that fave only large prime factors)

RSA in a nutsfell

1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
2. Compute $n=p q, \quad z=(p-1)(q-1)$
3. Choose e (with e<n) that has no common factors with z. (e, zare "relatively prime").
4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod $z=1$).
5. Public key is (n,e). Private key is ($n, d)$.

Why? (Will hint at)
How? (Won't discuss)

RS A: Encryption, decryption

0. Given (n, e) and (n, d) as computed above
1. To encrypt 6it pattern (message), m, compute $c=m^{e} \bmod n$ (i.e., remainder when m^{e} is divided by n)
2. To decrypt received bit pattern, c, compute
$m=c^{d} \bmod n$ (i.e., remainder when c^{d} is divided by n)

$$
\begin{aligned}
& \text { Magic } \\
& \text { happens! } m=\left(m^{e} \bmod n\right)^{d} \bmod n
\end{aligned}
$$

RSA: small example

$$
\begin{aligned}
& \text { Bob chooses } p=5, q=7 \text {. Then } n=35, z=24 \text {. } \\
& e=5 \text { (so e, zrelatively prime). } \\
& d=29 \text { (so ed-1 exactly divisible by } z \text {. } \\
& \text { encrypt: } \begin{array}{ccccc}
& \frac{\text { letter }}{} & m & m^{e} & \frac{c=m^{e} \bmod n}{17}
\end{array} \\
& \text { decrypt: } \quad \underset{17}{c} \quad \stackrel{c}{c}^{d 81968572106750915091411825223072000} \frac{m=c^{d} \bmod n}{12} \frac{\text { letter }}{1} \\
& \text { 7: Network Security } 16
\end{aligned}
$$

$$
\begin{aligned}
& \text { RSA: Why? } m=(m e)^{d} \bmod n \\
& \mathcal{N} \text { umber theory result: If } p, q \text { prime, } n=p q \text {, then } \\
& x^{y} \bmod n=x^{y \bmod (p-1)(q-1)} \bmod n \\
& \left(m^{e}\right)^{d} \bmod n=m^{e d} \bmod n \\
& \text { If it were easy } \\
& \text { to factor } n \text { into } \\
& p \text { and } q \text { then we } \\
& \text { would be in } \\
& \text { trouble! } \\
& =m^{e d} \bmod (p-1)(q-1) \bmod n \\
& \text { (using number theory result above) } \\
& =m^{1} \operatorname{modn} \\
& \text { (since we chose ed to be divisible by } \\
& \text { (p-1)(q-1) with remainder 1) } \\
& =m
\end{aligned}
$$

Reversible

\square What the private key encrypts the public key decrypts
\square What the public key encrypts the private key decrypts

Practicalmatters

\square Big primes like 5 and 7 (:)) already generated big numbers like ${ }^{481968572106750915091411825223072000}$ O What would happen with 1024 bit keys?

- Costly operations!
\square Finding 6 ig primes?

Storing your keys

$\square \mathcal{F o r}$ both symmetric and asymmetric cryptography how do you store the keys? OTypical key lengths are 512, 1024, 2048

- Can't exactly memorize it
$\square O K$ to store in on your computer? In a shared file system? $\mathcal{N} o$!
$\square \mathcal{N}$ ormally stored in a file encrypted with a pass phrase
\square Pass phrase !=your key

Clsing Cryptograpfy

Tlses of Cryptograpfy

\square Secrecy/Confidentiality: ensuring information is accessible only by authorized persons

- Iraditionally, the primary objective of cryptography.
- E.g.encrypting a message
\square Authentication: corroboration of the identity of an entity
- allows receivers of a message to identify its origin
- makes it difficult for third parties to masquerade as some one else
Oe.g., your driver's license and photo authenticates your image to a name, address, and birth date.

Clses of Cryptograpty

\square Integrity: ensuring information has not been altered by unauthorized or unknown means - Integrity makes it difficult for a third party to substitute one message for another.

- It allows the recipient of a message to verify it has not been modified in transit.
$\square \mathcal{N}$ (onrepudiation: preventing the denial of previous commitments or actions
O makes it difficult for the originator of a message to falsely deny later that they were the party that sent the message.
- E.g., your signature on a document.

Friends and enemies: Alice, Bob, Irudy

\square well-known in networksecurity world
$\square \mathcal{B o b}$, Alice want to communicate "securely"
\square Trudy, the "intruder" may intercept, delete, add messages

The language of cryptograpty

Digital Signatures (more)

\square Suppose Alice receives Alice thus verifies that:
$m s g$ m, and digital signature $d_{\mathcal{B}}(m)$
\square Alice verifies m signed by Bob by applying $\mathcal{B o b}$'s public key $\boldsymbol{e}_{\mathcal{B}}$ to $d_{\mathcal{B}}(m)$ then checks $e_{\mathcal{B}}\left(d_{\mathcal{B}}(m)\right)=m$.
\square If $e_{\mathcal{B}}\left(d_{\mathcal{B}}(m)\right)=m$, whoever signed m must

- Bob signed m.
- \mathcal{N} o one else signed m.

O Bob signed m and not m^{\prime}.
Non-repudiation:
○ Alice can take m, and signature $d_{\mathcal{B}}(m)$ to court and prove that $\mathcal{B o b}$ signed m.
have used Bob's
private key.

Digital Signatures

Cryptograpfic tecfinique analogous to fiand. written signatures.
\square Sender (Bob) digitally signs document, establisfing fe is document owner/creator.
\square Verifiable, nonforgeable: recipient (Alice) can verify that Bob, and no one else, signed document.

Simple digital signature for message m :

- Bob encrypts m with his private key $d_{\mathcal{B}^{\prime}}$ creating signed message, $d_{\operatorname{AB}}(m)$
$\square \mathcal{B o b}$ sends m and $d_{\mathbb{B}}(m)$ to Alice .

Message Digests

Computationally expensive to public-key-encrypt long messages
Goal: fixed-length, easy to compute digital signature, "fingerprint"
\square apply hash function \mathcal{H} to m, get fixed size message digest, $\mathcal{H}(m)$.

Hash function properties:

- Many-to- 1
\square Produces fixed-size msg digest (fingerprint)
\square Given message digest x, computationally infe asible computationally infeasible
to find m suchthat $x=$ to fin
$\mathcal{H}(\mathrm{m})$
\square computationally infeasible to find any two messages m and m 'such that $\mathcal{H}(m)=$ and m (m).

Has§ Function $\mathcal{A l g o r i t \hbar m s}$

\square Internet checksum would make a poor message digest.

- Too easy to find two messages with same checksum.
$\square \mathcal{M D} 5$ hash function widely used.
- Computes 128-6it
message digest in 4 -step process.
O arbitrary $128-6$ it string x, appears difficult to construct msg m whose $\mathcal{M D} 5$ fash is equal to x.
- S HAA- 1 is also used.
- USS standard
-160-6it message digest

Authentication

Goal: $\mathcal{B o b}$ wants Alice to "prove" fer identity to fim

Protocol ap 1.0: Alice says "I am Alice"

Failure scenario??

7: Network Security 31

Authentication: another try

Protocolap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Failure scenario?

ap4.0: Authentication: yet another try

Goal: avoid playback attack
Nonce: number (R) used onlyonce in a lifetime
ap4.0: to prove Alice "ive", Bob sends Alice nonce, R. Alice must return \mathcal{R}_{1} encrypted with shared secret key

Failures, drawbacks?

ap5.0: security fole

Man (woman) in the middle attack: Trudy poses as Alice (to $\mathcal{B o b}$) and as $\mathcal{B o b}$ (to Alice)

Trusted Intermediaries

```
Problem:
    O How do two entities
        establish shared
        secret key over
        network?
Solution:
    O trusted key
        distribution center
        (XDC) acting as
        intermediary
        Getweenentities
            Problem:
                            O When Alice obtains
        Bob's public key
        (from we b site, e.
        mail, diskette), how
        does she know it is
        Bob's public key, not
        Trudy's?
    Solution:
    O trusted certification
        authority (CA)
```


Key Distribution Center (KDC)

\square Alice, $\mathcal{B o b}$ need shared symmetric key.
\square RDC: server shares different secret key with each registered user.
\square Alice, Bob know own symmetric Keys, $\mathcal{K}_{\text {g. 双C }}$ $\mathcal{K}_{\mathcal{B} \text {, ㄱDC }}$, for communicating with $\mathcal{K D C}$.

Establisfing Trust

\square Is the problem of establishing "trust" with a key authority or certification authority the same as establishing "trust" with anyone else?

- Private Key: How do you agree on a shared secret key with the key authority?
- Public Key: CA can put the ir public Key on a 6ulle tin board but how do you convince them that your public key really is your public key?
\square Problem is the same!!
- Ulse out of 6 and means
$\square \mathcal{B C l C}!!!!$ Once youestablish trust with them you can use that to bootstrap trust with others
software) - unless have to key compromised -
7: Ret

- Certification authority cer ilar entity.
etc.) can register its public key with CA.
entity provides proof of identity to CA
- CA creates certificate (ing entity to public

Certificate digitally signed by CA .
Public key of CA can be unive rs ally known (on
key: e(sewhere)

- Apply CA's public Key to Bob's key -

