<u>14:</u> <u>Ethernet, Hubs, Bridges,</u> <u>Switches, Other Technologies</u> <u>used at the Link Layer, ARP</u> Last Modified:

4/9/2003 1:14:12 PM

DBaseT and 100BaseT (more) Max distance from node to Hub is 100 meters Hub can disconnect "jabbering adapter" Hub can gather monitoring information, statistics for display to LAN administrators

Gbit Ethernet

- use standard Ethernet frame format
- allows for point-to-point links and shared broadcast channels
- in shared mode, CSMA/CD is used; short distances between nodes to be efficient
- uses hubs, called here "Buffered Distributors"
- Full-Duplex at 1 Gbps for point-to-point links

5: DataLink Layer 5a-14

<u>Q:</u> Why not just one big Ethernet? Limited amount of supportable traffic: on single LAN, all stations must share bandwidth limited length: 802.3 specifies maximum cable length large "collision domain" (can collide with many stations) How can we get around some of these limitations?

Hubs (more)

- Each connected LAN referred to as LAN segment
- Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Hub Advantages:
 - o simple, inexpensive device
 - Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)

5: DataLink Layer 5a-17

Hub limitations

 single collision domain results in no increase in max throughput

 multi-tier throughput same as single segment throughput

- individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

Bridges

- Link Layer devices: operate on Ethernet frames, examining frame header and selectively forwarding frame based on its destination
- Bridge isolates collision domains since it buffers frames
- When frame is to be forwarded on segment, bridge uses CSMA/CD to access segment and transmit

5: DataLink Layer 5a-19

Bridges (more)

Bridge advantages:

- Isolates collision domains resulting in higher total max throughput, and does not limit the number of nodes nor geographical coverage
- Can connect different type Ethernet since it is a store and forward device
- Transparent: no need for any change to hosts LAN adapters

Switching Switching: A-to-B and A'-to-B' simultaneously, no collisions cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame slight reduction in latency Store and forward switching: entire frame received before transmission out an output port

Fragment-free switching: compromise, before send out the output port receive enough of the packet to do some error checking (ex. detect and drop partial frames)

5: DataLink Layer 5a-31

Bridges vs. Switches vs. Routers Switches = sophisticated multi-port bridges All store-and-forward devices o routers: Layer 3 (network layer) devices • Bridges/switches are Layer 2 (Link Layer) devices routers maintain routing tables, implement routing algorithms Bridges/switches maintain filtering tables, implement filtering, learning and spanning tree alaorithms 5 5 4 4 3 3 2 2 2 1

Bridge Router Host 5: DataLink Laver 5a-33

Routers vs. Bridges

Bridges + and -

- + Bridge operation is simpler requiring less processing bandwidth
- Topologies are restricted with bridges: a spanning tree must be built to avoid cycles
- Bridges do not offer protection from broadcast storms (endless broadcasting by a host will be forwarded by a bridge)

5: DataLink Layer 5a-34

Routers vs. Bridges

Routers + and -

Host

- + arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols)
- + provide firewall protection against broadcast storms
- require IP address configuration (not plug and play)
- require higher processing bandwidth
- □ bridges do well in small (few hundred hosts) while routers used in large networks (thousands of hosts)

5: DataLink Layer 5a-35

Point to Point Data Link Control

- one sender, one receiver, one link: easier than broadcast link:
 - o no Media Access Control
 - ono need for explicit MAC addressing
 - ○e.g., dialup link, ISDN line
- popular point-to-point DLC protocols:
 OPPP (point-to-point protocol)
 - ○HDLC: High level data link control

5: DataLink Layer 5a-46

<u>PPP Design Requirements</u> [RFC 1557]

- packet framing: encapsulation of network-layer datagram in data link frame
 - carry network layer data of any network layer protocol (not just IP) at same time
 ability to demultiplex upwards
- bit transparency: must carry any bit pattern in the data field
- error detection (no correction)
- connection livenes: detect, signal link failure to network layer
- network layer address negotiation: endpoint can learn/configure each other's network address

5: DataLink Layer 5a-47

PPP non-requirements

- □ no error correction/recovery
- 🗖 no flow control
- □ out of order delivery OK
- no need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!

b1

b2

h4

b5

01111110

PPF

5: DataLink Laver 5a-52

X.25 and Frame Relay

Like ATM:

- wide area network technologies
- virtual circuit oriented
- origins in telephony world
- can be used to carry IP datagrams and can thus be viewed as Link Layers by IP protocol just like ATM

5: DataLink Layer 5a-61

<u>X.25</u>

 X.25 builds VC between source and destination for each user connection

Per-hop control along path

- error control (with retransmissions) on each hop
- oper-hop flow control using credits
 - congestion arising at intermediate node propagates to previous node on path
 - · back to source via back pressure

LAN Addresses vs IP Addresses

32-bit IP address (128 bit IPv6):

- network-layer address
- used to get datagram to destination network (recall IP network definition)

LAN (or MAC or physical) address:

- used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs) burned in the adapter ROM

5: DataLink Layer 5a-69

LAN Address vs IP Addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number(b) IP address: like postal address

- MAC flat address => portability
 can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on network to which one attaches

