9:
Intro to Routing Algorithms

Last Modified:
3/24/2003 2:08:40 PM

4: Network Layer 4a-1

Routing

O IP Routing - each router is supposed to
send each IP datagram one step closer to
its destination

O How do they do that?

1 Static Routing

* Hierarchical Routing - in ideal world would that be

enough? Well its not an ideal world
0 Dynamic Routing

+ Routers communicate amongst themselves to
determine good routes (ICMP redirect is a simple
example of this)

+ Before we cover specific routing protocols we will
cover principles of dynamic routing protocols

4: Network Layer 4a-2

Routing Algorithm classification:
Static or Dynamic?

Choice 1: Static or dynamic?

Static:
0 routes change slowly over time
[Configured by system administrator

1 Appropriate in some circumstances, but obvious
drawbacks (routes added/removed? sharing load?)

0 Not much more to say?

Dynamic:
O routes change more quickly
0 periodic update

0 in response to link cost changes
4: Network Layer 4a-3

Routing Algorithm classification:
Global or decentralized?

Choice 2, if dynamic: global or decentralized
information?

Global:
0 all routers have complete topology, link cost info
0 “link state" algorithms

Decentralized:

O router knows physically-connected neighbors, link
costs to neighbors

O iterative process of computation, exchange of info
with neighbors (gossip)

0 “distance vector" algorithms 4 Network Layer 44

Roadmap

O Details of Link State
0 Details of Distance Vector
0 Comparison

4: Network Layer da-5

Routing

Routing protocol
Goal: determine "good” path
(sequence of routers) thru
network from source to dest.

Graph abstraction for
routing algorithms:
0 graph nodes are

routers 0 “good" path:
O graph edges are 0 typically means minimum
physical links cost path
o link cost: delay, $ cost, 0 other definitions
or congestion level possible

4: Network Layer da-6

Global Dynamic Routing

See the big picture; Find the best Route

What algorithm do you use?

4: Network Layer 4a-7

A Link-State Routing Algorithm

Dijkstra's algorithm
0 Know complete network topology with link costs for
each link is known to all nodes
0 accomplished via “link state broadcast”
0 In theory, all nodes have same info

0 Based on info from all other nodes, each hode
individually computes least cost paths from one
node (‘source") to all other nodes

| gives routing table for that node

O iterative: after k iterations, know least cost path to

k dest.'s

4: Network Layer 4a-8

Link State Algorithm:
Some Notation

Notation:

0 c(i,j): link cost from node i to j. cost
infinite if not direct neighbors

0 D(V): current value of cost of path from
source to dest. V

0 n(v): next hop from this source to v along
the least cost path

O N: set of nodes whose least cost path
definitively known

4: Network Layer 4a-9

Dijsktra's Algorithm

1 Initialization — know c(1,j) to start:
2 N={A}

3 forall nodes v

4 ifvadjacentto A

5 then D(v) = c(A,v)

6 else D(v) = infty

7
8

Loop
9 find w not in N such that D(w) is a minimum (optional?)
10 addwtoN

11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

4: Network Layer 4a-10

Dijkstra's algorithm: example

Step start N__D(B),n(B) D(C),n(C) D(D),n(D) D(E),n(E) D(F),n(F)
2,B 5C

—»0 A 1,A infinity infinity

—>1 AD 2B 4,D 2,D infinity

—»2 ADE 2B 3.D 4,D

—»3 ADEB 3.D 4D

—»4 ADEBC 4,D
5 ADEBCF

4: Network Layer 4a-11

Dijkstra's Algorithm gives routing
table

A Outgoing Link

Al nA)=A
$ B n(B)=B
é C| n()e=D

D| n(D)=D

E| nE)=D

F n(F)=D

4: Network Layer da-12

Complexity of Link State

Algorithm complexity: n nodes
0 each iteration
0 Find next w not in N such that D(w) is a minimum

0 Then for that w, check its best path to other
destinations

0 => n*(n+1)/2 comparisons: O(n?)
0 more efficient implementations possible using a
heap: O(nlogn)

4: Network Layer 4a-13

Oscillations

0 Assume:
0 Link cost = amount of carried traffic
0 Link cost is hot symmetric
1 B and D sending 1 unit of traffic: C send e units of traffic
0 Initially start with slightly unbalanced routes
0 Everyone goes with least loaded, making them most loaded
for next time, so everyone switches
0 Herding effect!

1\A 1+e 2*®0
00 <D 4.
K P

1 T 1 1

Ini'riallyes'rar‘r with .. BandCgo .B CandDgo - BCDgo

almost equal routes clockwise to A counterclockwise clockwise
4: Network Layer 4a-14

Preventing Oscillations

0 Avoid link costs based on experienced load
0 But want to be able to route around heavily
loaded links...
0 Avoid “herding” effect
0 Avoid all routers recomputing at the same time
0 Not enough to start them computing at a
different time because will synchronize over
time as send updates
0 Deliberately introduce randomization into time
between when receive an update and when
compute a new route

4: Network Layer 4a-15

Distance Vector Routing Algorithm

distributed:

0 each node communicates only with directly-
attached neighbors

iterative:

O continues until no nodes exchange info.
0 self-terminating. no “signal” to stop
asynchronous:

0 nodes need not exchange info/iterate in lock
stepl

4: Network Layer 4a-16

Distance Vector Routing Algorithm

. Column only for each neighbor
Distance Table data structure viere g
cost to destination via

0 each node has its own row for D () z
each possible destination

0 column for each directly-
attached neighbor to node

0 example: in node X, for dest. Y
via neighbor Z:

destination

Y DXY,2)
distance from X to
X =Y, via Z as next hop

D'(Y,2)
= o(X,2)+ minw{DZ(Y,w)}

Rows for each possible dest |

4: Network Layer 4a-17

Example: Distance Table for E

Column only for each neighbor
cost to destination via

D() A B D
Al1 14 5
E
D (row, col) s§B|7 8 5
E g
D (C,D) = c(E,D)+minW{DD(C,w)} Zcle 9 4
=242 =4 s
E
D(AD) = o(E,D) +min D (AwW) Dl4 11 2
E T s Loop back through B! py, for each possible dest !
D (AB) = c(EB)+min (DA W)

8+6 =14 Loop back through E! 4: Network Layer 4a-18

Distance table gives routing table

Lo O = least cost
cost to destination via

Outgoing link
D () A B D to use, cost
Al(D) 14 5 Al A1
s B|7 8 s B| D5
© ¢
icle 9 (@ g C| D4

D411@ D| D4

Distance table —— Routing fable

4: Network Layer 4a-19

Distance Vector Routing: overview

Tterative, asynchronous: Each node:
each local iteration caused
by:

0 local link cost chgnge) wait for (change in local link

[message from neighbor: its cost of msg from neighbor)
least cost path change
from neighbor

Distributed:

0 each node notifies
neighbors only when its
least cost path to any .
destination changes if least cost path to any dest

0 neighbors then notify has changed, notify

their neighbors if neighbors
necessary

recompute distance table

4: Network Layer 4a-20

Distance Vector Algorithm:

At all nodes, X:

1 Initialization (don't start knowing link costs for all links in graph):

2 for all adjacent nodes v:

3 DX(*,V) = infty /* the * operator means "for all rows" */

4 DXvv) = c(Xv)

5 for all destinations, y

6 send minwD y,w) to each neighbor /* w over all X's neighbors */

Then in steady state...

4: Network Layer 4a-21

Distance Vector Algorithm (cont.):

8 loop
9 wait (until | see a link cost change to neighbor V
10 or until | receive update from neighbor V)
11

12 if (c(X,V) changes by d)

13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */

15 for all destinations y: DX(y,V) = DX(y,V) +d

17 else if (update received from V wrt destination Y)

18 /* shortest path from V to some Y has changed */

19 /*V has sent a new value for its min,, DV(Y,w) */

20 /*call this received new value is "newval" */

21 for the single destination y: DX(Y,V) =¢(X,V) + newval

22

23 if we have a new min,, DX(Y,w)for any destination Y

24 send new value of min, D™(Y,w) to all neighbors

25

26 forever 4: Network Layer 4a-22
L5

Distance Vector Algorithm: example

To start just know directly connected links...tell neighbors

D‘ cvosl !Iza &(I cvoslv;_a
d
y cr|l@e= | @ s
5
{&1 v :Z m@ t Z @ T
7 <
ostvia X hears news from Y and Z
o] x z v
@ = 0¥zy) = cXY) + min, (0" 2w}
s = 2+1=3
z| oo
' @ X . V4
D (Y,2) = o(X,Z) + min, {D(Y,w)}
cost via = 7+1=8
§ x ¥
3 —
e x| (@D e
8
tylee @ 4: Network Layer 4a-23

Distance Vector Algorithm: example

In steady state, when have good news tell neighbor

cost via

Ll cost via
&Yz & v 2z & vz
d d d
eV (@) > Y@ 8 o ¥
. ¥ : : :
(-3 cn@ t 2 @7 tZ
X 7
7 £
Lyl cost via cost via
o %z ol x 2z o) x 2z
d a
% @) e cx|@ s 'R
5 5
tzleo tzls @ tz
t wil cost via cost via
I Flx v dlx v
d d d
ex| (@D eo ax| 7@ o X
& L]
:Y m@ [9@ vy

4: Network Layer 4a-24

Distance Vector: link cost changes

Link cost changes:
0 node detects local link cost change
0 updates distance table (line 15)

0 if cost change in least cost path, 50
notify neighbors (lines 23,24)

2) i xz J)x z |fenE
.
good @ s [@ xl@ & xI@s
news ! / ' A
vl nyone s
travels & X"y flx ¥ flx v/ dpx v ap\{‘zbllael:;
fast" x| 50® x[sn@ =t|sn® HETe)
! :
(XY}
) change N
time T > t |
4: Network Layer 4a-25

¥
o
X

Distance Vector: link cost changes

Link cost changes: 60
I good news travels fast g i, 1
I bad news travels slow - < z
“count to infinity" problem! 50

via
DYXZ D| x Z D] X Z D| X Z DYX
x

| x 2 algorithm
@ s x|. 0(® x x| 60(8)
v

BCI. continues
'
i
Xy % v\oz % \f/rﬁ X

£

onl

f L
x| s0® x!so@ x| s0(@ x!so@ X 50@
cixy) !
time change >
% 4 t ty ty

4: Network Layer 4a-26

Distance Vector: poisoned reverse
If Z routes through Y to get to X :

0 Originally, Z tells Y its (Z's) distance to 60

X is infinite (so Y won't route to X via 1

z) ng 73
0 Inend,Y fells Z infinity < 50 ~

0 will this completely solve count to

infinity problem?
14 E,ia algorithm
uY Xz D| x z o| x 2 Dl x z % z | terminates

x| @ == 0) = x||=o x| 60 x| eo@ED

=il
Foxv kv nﬂxv/rfxv d| x v
xls0@® x|s@® x|@s1 x| @ e x| G
[}
cfX,Y) !
titne change .
t, t t L

o

¢

4: Network Layer 4a-27

Bigger Loops and Poison Reverse

E D
D (AD) = c(E,D)+minW{D (Aw)}
= 243 =5

Loop back through E! Poison reverse will fix this E 2
D tells E infinity because D's route to A through E

E
D (AB) = c(E,B)+minw{DB(A,w))
= g+6 =14

Loop back through E! Poison reverse will not fix this
B's route to A is through E but B doesn't know that
so does not tell E infinity
B's route is through C so no poison reverse
E will try to send through B

4: Network Layer 4a-28

Count to Infinity Example with
Bigger Loop

B will learn bad news 1

C will have told B infinity because its route to A is
through B, so B won't reroute through C A 8 2

E however will have told B about a good route to A
through D (cost 6) > <D3

B will choose that route instead and advertise it as

the new best to C (cost 6+8 = 14); it will be worse
than the old one it advertised to C (old cost = 1)
C will propagate this updated “best” route to D

(cost 15) 1
D will propagate this new "best” route to E (cost 5 B €63
) SA 8 2
E will update the "best” route to B (cost 19)
Last time it advertised cost 6 to B
It will loop around adding 13 each time (cost of 2
loop)
Will continue until cost E advertises to B is bigger
than 500

4: Network Layer 4a-29

Comparison of LS and DV algorithms

Message complexity Robustness: what happens
0 LS: nodes send info on if router malfunctions?
directly connections to all LS:
other nodes -
1 More, smaller messages
0 DV: nodes send info on best
paths to all destinations to -
neighbors
0 Fewer, larger messages bv:

d c 0 DV node can advertise
Speed of Convergence incorrect path cost

0 LS: O(n?) algorithm 0 each node's table used by
0 may have oscillations others

0 DV: convergence time varies « error propagate thru
o may be routing loops network
0 count-to-infinity problem

0 node can advertise
incorrect /ink cost

each node computes only
its own table

4: Network Layer 4a-30

