
1

2: Application Layer 1

5: Socket Programming

Last Modified:
2/10/2003 2:38:37 PM

2: Application Layer 2

Socket programming

Socket API
❒ introduced in BSD4.1 UNIX,

1981
❒ Sockets are explicitly

created, used, released by
applications

❒ client/server paradigm
❒ two types of transport

service via socket API:
❍ unreliable datagram
❍ reliable, byte stream-

oriented

a host-local, application-
created/owned,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another (remote or

local) application process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 3

Sockets

Socket: a door between application process
and end-end-transport protocol (UCP or
TCP)

process

kernel
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

kernel
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 4

Languages and Platforms

Socket API is available for many languages on
many platforms:

❒ C, Java, Perl, Python,…
❒ *nix, Windows,…

Socket Programs written in any language and
running on any platform can communicate
with each other!

Writing communicating programs in different
languages is a good exercise

2: Application Layer 5

Socket Programming is Easy

❒ Create socket much like you open a file
❒ Once open, you can read from it and write

to it
❒ Operating System hides most of the

details

2: Application Layer 6

Decisions

❒ Before you go to write socket code, decide
❍ Do you want a TCP-style reliable, full duplex,

connection oriented channel? Or do you want a
UDP-style, unreliable, message oriented
channel?

❍ Will the code you are writing be the client or
the server?

• Client: you assume that there is a process already
running on another machines that you need to connect
to.

• Server: you will just start up and wait to be
contacted

2

2: Application Layer 7

Socket programming with TCP
Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process

❒ When client creates socket:
client TCP establishes
connection to server TCP

❒ When contacted by client,
server TCP creates new
socket for server process to
communicate with client

❍ Frees up incoming port
❍ allows server to talk with

multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 8

Pseudo code TCP client

Create socket, connectSocket
Do an active connect specifying the IP

address and port number of server
Read and Write Data Into connectSocket to

Communicate with server
Close connectSocket

2: Application Layer 9

Pseudo code TCP server

Create socket (doorbellSocket)
Bind socket to a specific port where clients can

contact you
Register with the kernel your willingness to listen

that on socket for client to contact you
Loop

Accept new connection (connectSocket)
Read and Write Data Into connectSocket to

Communicate with client
Close connectSocket

End Loop
Close doorbellSocket

2: Application Layer 10

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 11

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 12

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

3

2: Application Layer 13

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2: Application Layer 14

Client/server socket interaction: TCP
(Java)

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 15

Example: C client (TCP)

#include <sys/socket.h>
#include <netinet/in.h>

Int main(int argc, char **argv) {

int connectionSocket;
char sentence[MAX_LINE];
char modifiedSentence[MAX_LINE];
struct hostent *hp;

connectionSocket = socket (PF_INET, SOCK_STREAM,0);

/* translate host name into peer's IP address */
hp = gethostbyname(“hostname”);

Create
client socket

Resolve hostname
Of server to

IP adresss

Warning: Should check return codes of major functions!! Omitted for space here

2: Application Layer 16

Example: C client (TCP), cont.
bzero((char *) &sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(6789r);
bcopy(hp->h_addr, (char *) &sin.sin_addr,

hp->h_length);

connect(connectSocket,
(struct sockaddr *) &sin, sizeof(sin))

fgets(sentence, MAXLINE, stdin);
buff[MAXLINE-1] = '\0';
write(connectSocket, sentence, strlen(sentence)+1, 0);

read(connectionSocket, modifiedSentence,
sizeof(modifiedSentence), 0);

fprintf(stderr, “FROM SERVER: %s \n“,
modifiedSentence);

close(connectSocket);
}

Connect to server

Send line
to server

Read line
from server

2: Application Layer 17

Example: C server (TCP)

#include <sys/socket.h>
#include <netinet/in.h>

Int main(int argc, char **argv) {
int welcomeSocket, connectionSocket;
char clientSentence[MAX_LINE];;
struct sockaddr_in servaddr;

welcomeSocket = socket(AF_INET, SOCK_STREAM, 0);

servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(6789);

bind(lwelcomeSocket, (struct sockaddr *) &servaddr, \
sizeof(servaddr));

listen(welcomeSocket , LISTENQ);

Create
welcoming socket

at port 6789

Warning: Should check return codes of major functions!! Omitted for space here

2: Application Layer 18

Example: C server (TCP), cont
for (; ;) {

connectionSocket =
accept(welcomeSocket , (struct sockaddr *) NULL, NULL);

bytesRead = read(connectionSocket, clientSentence, MAXLINE);

//would have to write the capitalize procedure
capitalize(clientSentence);

write(connectionSocket, clientSentence, MAXLINE);

close(connectSocket);
}

close(welcomeSocket);
}

Read in line
from socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Wait, on welcoming
socket for contact

by client

4

2: Application Layer 19

TCP Server vs Client

❒ Server waits to accept connection on well
known port

❒ Client initiates contact with the server
❒ Accept call returns a new socket for this

client connection, freeing welcoming socket
for other incoming connections

❒ Read and write only (addresses implied by
the connection)

2: Application Layer 20

Concurrent TCP Servers

❒ What good is the doorbell socket? Can’t accept
new connections until call accept again anyway?

❒ Benefit comes in ability to hand off processing to
another process

❍ Parent process creates the “door bell” or “welcome”
socket on well-known port and waits for clients to
request connection

❍ When a client does connect, fork off a child process to
handle that connection so that parent process can return
to waiting for connections as soon as possible

❒ Multithreaded server: same idea, just spawn off
another thread rather than a full process

❍ Threadpools?

2: Application Layer 21

Pseudo code concurrent TCP
server
Create socket doorbellSocket
Bind
Listen
Loop

Accept the connection, connectSocket
Fork
If I am the child

Read/Write connectSocket
Close connectSocket
exit

EndLoop
Close doorbellSocket

2: Application Layer 22

Backlog

❒ Many implementations do allow a small
fixed number (~5) of unaccepted
connections to be pending, commonly called
the backlog

❒ This helps avoid missing connections while
process not sitting in the accept call

2: Application Layer 23

Socket programming with UDP

UDP: very different mindset
than TCP

❒ no connection just
independent messages sent

❒ no handshaking
❒ sender explicitly attaches

IP address and port of
destination

❒ server must extract IP
address, port of sender
from received datagram to
know who to respond to

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 24

Pseudo code UDP server

Create socket
Bind socket to a specific port where clients

can contact you
Loop

(Receive UDP Message from client x)+
(Send UDP Reply to client x)*

Close Socket

5

2: Application Layer 25

Pseudo code UDP client

Create socket

Loop
(Send Message To Well-known port of
server)+
(Receive Message From Server)

Close Socket

2: Application Layer 26

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 27

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

2: Application Layer 28

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 29

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 30

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

6

2: Application Layer 31

Example: C client (UDP)
#include <sys/socket.h>
#include <netinet/in.h>

Int main(int argc, char **argv) {

int socket;
char sentence[MAX_LINE];
char modifiedSentence[MAX_LINE];
struct hostent *hp;
struct sockaddr_in cliAddr, remoteServAddr;

socket= socket(AF_INET,SOCK_DGRAM,0);

/* translate host name into peer's IP address */
hp = gethostbyname(“hostname”);

Create socket

Translate
hostname to IP

address using DNS

2: Application Layer 32

Example: C client (UDP), cont.
/* bind any port */

cliAddr.sin_family = AF_INET;
cliAddr.sin_addr.s_addr = htonl(INADDR_ANY);
cliAddr.sin_port = htons(0);

bind(socket, (struct sockaddr *) &cliAddr, sizeof(cliAddr));

remoteServAddr.sin_family = h->h_addrtype;
memcpy((char *) &remoteServAddr.sin_addr.s_addr,

h->h_addr_list[0], h->h_length);
remoteServAddr.sin_port = htons(9876);

sendto (socket, sentence, MAX_LINE, 0,
(struct sockaddr *) &remoteServAddr,
sizeof(remoteServAddr));

recvfrom(socket, modifiedSentence, MAX_LINE, 0,
(struct sockaddr *) &remoteServAddr, &remoteServLen);

fprintf(stderr, “FROM SERVER: %s \n“, modifiedSentence);
close(socket);

}

Register to receive
datagrams on this

socket

Send datagram
to server

Read datagram
from server

2: Application Layer 33

Example: C server (UDP)

#include <sys/socket.h>
#include <netinet/in.h>

Int main(int argc, char **argv) {

int socket;
char clientSentence[MAX_LINE];
struct sockaddr_in svrAddr, cliAddr;

socket= socket(AF_INET,SOCK_DGRAM,0);
Create UDP

socket

2: Application Layer 34

Example: C server (UDP), cont.
/* bind any port */

svrAddr.sin_family = AF_INET;
svrAddr.sin_addr.s_addr = htonl(INADDR_ANY);
svrAddr.sin_port = htons(9876);

bind(socket, (struct sockaddr *) &svrAddr, sizeof(svrAddr));

for (;;){
recvfrom(socket, clientSentence, MAX_LINE, 0,

(struct sockaddr *) &cliAddr, &cliLen);

//would have to write the capitalize procedure
capitalize(clientSentence);

sendto (socket, clientSentence, MAX_LINE, 0,
(struct sockaddr *) &cliAddr,
sizeof(cliAddr));

}
close(socket);

}

Register to receive
datagrams on this

socket
Read datagram

from client
Extract return

address

Reply to the
client

End of for loop,
loop back and wait for
another datagram

2: Application Layer 35

UDP Server vs Client

❒ Server has a well-known port number
❒ Client initiates contact with the server
❒ Less difference between server and client

code than in TCP
❍ Both client and server bind to a UDP socket
❍ Not accept for server and connect for client

❒ Client send to the well-known server port;
server extracts the client’s address from
the datagram it receives

2: Application Layer 36

TCP vs UDP

❒ TCP can use read/write (or recv/send) and
source and destination are implied by the
connection; UDP must specify destination
for each datagram
❍ Sendto, recevfrom include address of other

party
❒ TCP server and client code look quite

different; UDP server and client code vary
mostly in who sends first

7

2: Application Layer 37

Java vs C

❒ Java hides more of the details
❍ new ServerSocket of Java = socket, bind and

listen of C
❍ new Socket hides the getByName (or

gethostbyname) of C; Unable to hide this in the
UDP case though

❍ Socket API first in C for BSD; more options
and choices exposed by the interface than in
Java ?

2: Application Layer 38

Note

❒ Examples were simple code snippets
❒ To fit on a slide, I omitted important

things like:
❍ Testing each connect, sendto and recvfrom for

errors
❍ In UDP case, handling the case of packet loss

❒ The behavior of many of these functions
can be “customized” with various socket
options
❍ In C, use setsockopt/getsockopt
❍ In Java, use setOption/getOption

2: Application Layer 39

Socket Programming in the Real
World
❒ Download some open source

implementations of network applications
❍ Web browsers (Mosaic, Jazilla)
❍ DNS Servers and resolvers (BIND)
❍ Email clients/servers (sendmail, qmail, pine)
❍ telnet

❒ Can you find the socket code? The protocol
processing? What percentage of the code
is it? What does the rest of the code do?

2: Application Layer 40

On to the transport layer…

❒ Important to remember that we build
transport services to support applications

❒ Transport services are a means to an end

2: Application Layer 41

Outtakes

2: Application Layer 42

Real Internet Traffic Analysis
Credit:
CAIDA (1999)

8

2: Application Layer 43

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

news

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
No loss ?

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no?
no
no?
yes, 100’s msec

yes, few secs
yes, 100’s msec
no

2: Application Layer 44

Internet apps: their protocols and transport
protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

DNS

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
RTP, proprietary
(e.g. RealNetworks)
NFS
proprietary
(e.g., Vocaltec)
DNS typically UDP, TCP

Underlying
transport protocol

TCP
TCP
TCP
TCP
UDP

TCP or UDP
typically UDP

