
1

2: Application Layer 1

4: Application Protocols:
SMTP and others

Last Modified:
2/3/2003 8:07:08 PM

2: Application Layer 2

Electronic Mail

2: Application Layer 3

Electronic Mail

Three major components:
❒ user agents
❒ mail servers
❒ simple mail transfer

protocol: smtp

User Agent
❒ a.k.a. “mail reader”
❒ composing, editing, reading

mail messages
❒ e.g., Eudora, Outlook, elm,

Netscape Messenger
❒ outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 4

Electronic Mail: mail servers

Mail Servers
❒ mailbox contains incoming

messages (yet to be read)
for user

❒ message queue of outgoing
(to be sent) mail messages
(if message cannot be
delivered will stay in queue)

❒ smtp protocol between mail
servers to send email
messages

❍ Mail server is an SMTP
client when sending mail

❍ Mail server is an SMTP
server” when receiving
mail

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 5

Electronic Mail: smtp [RFC 2821]

❒ Uses tcp to reliably transfer email msg from
client to server, port 25

❒ direct transfer: sending server to receiving
server

❒ three phases of transfer
❍ handshaking (greeting)
❍ transfer of messages
❍ closure

❒ command/response interaction
❍ commands: ASCII text
❍ response: status code and phrase
❍ Much like HTTP

2: Application Layer 6

SMTP History

❒ SMTP has been around a long time
❍ RFC done in 1982
❍ In use well before that

❒ Messages must be in 7-bit ASCII
(made sense in text-based early days)

❒ Requires encoding for binary data
(jpegs, etc.) in 7-bit ASCII (yuck!)

2

2: Application Layer 7

Sample smtp interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

2: Application Layer 8

try smtp interaction for yourself:

❒ telnet servername 25
❒ see 220 reply from server
❒ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)
❒ How do you know the right server name?
Trace it – does your mail data go in the

clear?

2: Application Layer 9

What is missing?

❒ Some commands processed by SMTP protocol
mirror mail headers we are used to seeing in our
email messages (To, From, …), but are not the
same things

❒ Email headers (To, From, CC, Subject, Date, ..) are
considered part of the data by SMTP and are not
processed SMTP server at all!

❒ Email headers are processed by the mail reader
software and ignored by SMTP

❍ How is Bcc implemented?
❒ Another example of “protocol” layering (like HTML

and HTTP)

2: Application Layer 10

Mail message format

smtp: protocol for exchanging
email msgs

RFC 2822: standard for text
message format (format of
data from smtp
perspective)

❒ header lines, e.g.,
❍ To:
❍ CC:
❍ Subject:
different from SMTP

commands!
❒ body

❍ the “message”, ASCII
characters only

Message headers

Message body

blank
line

SMTP Data

2: Application Layer 11

Sample smtp interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: To: bob@hamburger.edu
C: Subject: dinner preferences
C: From: alice@crepes.fr
C:
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection 2: Application Layer 12

SMTP format

❒ SMTP requires that message (header & body) be
in 7-bit ascii

❒ Certain character strings are not permitted in
message (e.g., CRLF.CRLF). Thus message has to
be encoded (usually into either base-64 or
quoted printable)

❒ SMTP server uses CRLF.CRLF to determine end
of message

3

2: Application Layer 13

What about sending pictures and other
binary data?
❒ Don’t try this by hand ☺
❒ MIME: multimedia mail extension, RFC 2045, 2056
❒ additional lines in msg header declare MIME content

type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 14

MIME types: Extensible
Content-Type: type/subtype; parameters

Text
❒ example subtypes: plain,

html

Image
❒ example subtypes: jpeg,

gif

Audio
❒ example subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps
coding)

Video
❒ example subtypes: mpeg,

quicktime

Application
❒ other data that must be

processed by reader
before “viewable”

❒ example subtypes:
msword, octet-stream

2: Application Layer 15

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

2: Application Layer 16

Spam/forged mail

❒ “Received:” and “MessageID” headers are
part of the data
❍ Accurate and helpful from legitimate servers

and user agents
❒ Start with a legitimate server you trust

❍ Don’t relay messages from a site outside your
domain to another host outside your domain

❍ Verify the Mail From field (resolvable domain
and matching IP address)

❍ Refuse traffic from known spammers

2: Application Layer 17

Sample Spam
From dogboyseven@aol.com Sat Sep 4 16:55:41 1999
Received: from cs2.CS.Berkeley.EDU (cs2.CS.Berkeley.EDU [169.229.60.56])
by mnemosyne.CS.Berkeley.EDU (8.9.1a/) with ESMTP id QAA20836 for <jnm@mailspool.CS.Berkeley.EDU>;
Sat, 4 Sep 1999 16:55:38 -0700 (PDT)

Received: from mail.everfaster.com (mail.everfaster.com [197.46.220.4])
by cs2.CS.Berkeley.EDU (8.9.1a/8.6.6.Beta11) with ESMTP id LAA18735 for <jnm@cs.berkeley.edu>; Sat, 4
Sep 1999 16:55:04 -0700 (PDT)

Received: from gate.hypermoon.com (pool37.qs4w.longlink.net [217.6.1.7])
by mail.everfaster.com (8.8.7/8.8.7) with SMTP id PAA20074; Sat, 4 Sep 1999 19:54:21 -0400 (EDT)

Received: from fritz.hotdogcity.com (fritz.hotdogcity.com [221.88.9.16])
by server.big-hello.com (8.8.8/8.8.8) with SMTP id RAA04617; Sat, 4 Sep 1999 19:53:33 -0400 (EDT)

Received: by fritz.hotdogcity.com with Internet Mail Service (5.5.248.0)
id Q19G494F; Sat, 4 Sep 1999 19:53:25 -0400 (EDT) Date: Sat, 4 Sep 1999 19:53:23 -0400 (EDT)
From: Charles Lewis <clewis@hotmail.com>
To: jnm@cs.berkeley.edu
Subject: You'll never believe this!
Message-ID: <19990904195323.H8159@fritz.hotdogcity.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii

You won't believe this, but some company just paid me to surf the web! Check out...

2: Application Layer 18

Tracking and Reporting Spam

❒ Record IP address of sender and time and
date of message transfer

❒ Spamcop uses a combination of tools like
dig, nslookup and finger to cross-check all
the information in an email header and find
the email address of the system
administrator responsible for the network
from which the mail was sent

❒ postmaster@domain or abuse@domain

4

2: Application Layer 19

Multiple recipients

❒ When you send mail to your outgoing mail
server, transfer one copy of message
regardless of how many recipients
❍ Great for spammers /

❒ Mail servers could play the same trick
❍ Look at RCPT to list
❍ If more than one recipient per destination mail

server then transfer just one mail
❒ Could also send one copy per recipient

❍ Recommended configuration?

2: Application Layer 20

Email viruses

❒ Often attachments which once opened run
with the users full privileges and corrupt
the system on which mail is read

❒ Viruses tend to target Windows as it is the
platform used by the majority of people

2: Application Layer 21

SMTP vs HTTP

❒ Smtp: persistent connections like HTTP 1.1

❒ Both have ASCII command/response
interaction, status codes

❒ http: each object is encapsulated in its own
response message

❒ smtp: multiple objects message sent in a
multipart message

❒ http: pull; smtp: push
2: Application Layer 22

Outgoing Mail Server?

❒ Why not just SMTP server on local
machine?

❒ “Push not pull” means your PC must be
constantly on to accept “push”

2: Application Layer 23

SMTP = outgoing

❒ Notice we didn’t see any SMTP commands
to “get” or “retrieve” mail

❒ SMTP is for outgoing mail only
❒ How do we get mail?

❍ Early days: log on to server and read mail from
a mailbox = file on server

❍ How many people still read mail that way? (I do
☺)

❍ Today many people read mail on their PC
❍ How do they get their mail from the mail

server?

2: Application Layer 24

Incoming mail?

❒ Mailbox file
❒ POP: Post Office Protocol [RFC 1939] authorization (agent <-

->server) and download
❒ IMAP: Internet Mail Access Protocol [RFC 1730] more

features (more complex) manipulation of stored messages
on server

❒ HTTP: Hotmail , Yahoo! Mail, etc.
❍ Why not use HTTP to transfer random things like email?
❍ Convenient – don’t need mail reader just the ubiquitous web

browser
❒ Other?

sender’s mail
server

receiver’s mail
server

user
agentuser

agent

SMTP SMTP POP3 or
IMAP

5

2: Application Layer 25

POP3 protocol
authorization phase
❒ client commands:

❍ user: declare username
❍ pass: password

❒ server responses
❍ +OK
❍ -ERR

transaction phase, client:
❒ list: list message numbers
❒ retr: retrieve message by

number
❒ dele: delete
❒ Quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 26

try POP interaction for yourself:

❒ telnet servername 110
❒ see “OK POP3 server ready” reply from server
❒ enter user, pass, list, retr, dele commands

above lets you send get you own email without using
email client (reader)

Trace it – do your password and mail data go
in the clear?

Do you configure your mail reader to pop mail
every X minutes? Same as announcing your
password regularly!

2: Application Layer 27

IMAP

❒ Allows user to set up and maintain multiple folders
(for sorting mail) on the remote server

❒ Can get headers for and manipulate messages
without downloading them (can even download
individual MIME attachments)

❍ Don’t pay cost to download over slow link
❍ Don’t leave them on insecure computers

❒ Stateful protocol - stores per user information
about folders and the status of the messages in
them

❍ Folder information, actual messages
❍ Seen, Deleted, Answered flags per message

2: Application Layer 28

IMAP con’t

❒ During an IMAP connection, the server
transitions between multiple states
❍ Initially non-authenticated
❍ Authenticated
❍ Selected – folder selected and operations on

messages permitted
❍ Finally, Logout state

2: Application Layer 29

Authentication in IMAP
❒ Client requests a certain AUTHENTICATION method

C: A001 AUTHENTICATE KERBEROS_V4

❒ If server implements that authentication mechanism then it will
authenticate via that method

S: + AmFYig==
C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kL

N3/IJmrMG+25a4DT+nZImJjnTNHJUtxAA+o0KPKfH
EcAFs9a3CL5Oebe/ydHJUwYFd

S: + or//EoAADZI=
C: DiAF5A4gA+oOIALuBkAAmw==
S: A001 OK Kerberos V4 authentication successful

❒ Sever can respond with NO if it does not support that
authentication mechanism

S: A001 NO authenticate failure

2: Application Layer 30

Authentication in IMAP (cont)

❒ Client can try various authentication
mechanisms in decreasing order of
preference looking for one the server
supports

❒ In the worst case, a client may
authenticate with plain text login

C: a001 LOGIN SMITH SESAME
S: a001 OK LOGIN completed

6

2: Application Layer 31

Once authenticated, client can:

❒ SELECT a mailbox
C: A142 SELECT INBOX
S: * 172 EXISTS S: * 1 RECENT
S: * OK [UNSEEN 12] Message 12 is first unseen
S: * OK [UIDVALIDITY 3857529045] UIDs valid
S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
S: A142 OK [READ-WRITE] SELECT completed

❒ CREATE, RENAME or DELETE mailboxes
❒ FETCH messages from a mailbox
❒ SEARCH through messages
❒ APPEND messages to a mailbox

2: Application Layer 32

Pop vs IMAP

❒ Similarities
❍ Mail delivered to a shared, constanly connected server
❍ New mail accessible anywhere in network on a variety of

platforms
❍ For access only, Need SMTP to send mail

❒ Differences
❍ POP simpler and more established (more clients and

servers that support it)
❍ IMAP is stateful protocol with more features; POP uses

less server resources
❍ IMAP = prioritize download time; POP = shorter overall

connection time

2: Application Layer 33

Network News

Thanks to Jeffrey Vinocur (NNTP presentation, Spring 2002)

2: Application Layer 34

What is Usenet?

❒ Reading/posting to Usenet newsgroups
❒ Conceptually: a semi-organized collection of forums

(“newsgroups”) for public discussion

❒ Technically: a system for distributing email-like
messages

2: Application Layer 35

Usenet Messages

❒ Format: like email, but a bit stricter and with some extra
headers (e.g., Newsgroups) – we don’t care about this today,
except for two important headers

❒ Message-ID: unlike email, every message truly needs to
have a globally unique identifier

❒ Path: we’ll see this header later

2: Application Layer 36

Path: news.litech.org!lnsnews.lns.cornell.edu!paradoxa.ogoense.net!not-for-meow
From: meowbot@meowing.net (A Meowbot)
Newsgroups: alt.dev.null
Subject: Why?
Date: Sun, 27 Jan 2002 23:25:52 +0000 (UTC)
Organization: a tyranny of meowing fascist censor cabalists
Lines: 4
Approved: nope.
Message-ID: <mW.3C548C72.8BC5@K0deZ.scriptkiddie.net>
X-Trace: paradoxa.ogoense.net 1012173952 6565 141.154.205.147 (27 Jan

2002 23:25:52 GMT)
X-Complaints-To: abuse@ogoense.net
X-Meow: Wouf
Mail-Copies-To: nobody
X-No-Repost: yes
Xref: news.litech.org alt.dev.null:492

Because we like you.

--
Meow

7

2: Application Layer 37

Network Topology

❒ Users connect to a local site
❒ Each site may have several servers for

better throughput
❒ Sites are connected by (manually-

requested and -configured) peering links to
other sites

❒ Major sites have hundreds of peers

2: Application Layer 38

So I post…then what?

❒ The goal is for every article to make it to
every server in the world – the “floodfill”
model

❒ This can be as fast as a few seconds or as
long as a few days (normally a few hours)

2: Application Layer 39

Serious bandwidth
Credit:
CAIDA (1999)

2: Application Layer 40

An article arrives…
This can be either a new post from a user or an
article being “fed” from a peering server.

1. The server’s “name” added to the Path
header (history of where the article has
been)

2. The server stores the article so users
can read it

3. For each of the server’s peers, determine
if the peer has seen the article already
(first check for peer’s name in Path
header, then ask the peer about the
Message-ID)

4. Send the article to peers who do not have
it

2: Application Layer 41

Path headers and Message-IDs

❒ Let’s trace an article. The initial component (at
the end!) of the Path header marks the original
posting server; then the originating server adds
its name:

Path: paradoxa.ogoense.net!not-for-meow

❒ Then this article gets fed to a another server and
then add their hostname:

Path: lnsnews.lns.cornell.edu!paradoxa.ogoense.net!not-for-meow

❒ And then it gets fed to another server…
Path: news.litech.org!lnsnews.lns.cornell.edu!paradoxa.ogoense.net!not-for-meow

2: Application Layer 42

reed phs
\ / \

uok---duke-unc
/ \

research vax135
|

ucbvax

Usenet, 1980 Credit:
Mark Horton

8

2: Application Layer 43

pdp
(Misc) ! (NC) (Misc)

decvax sii reed phs--unc--grumpy duke34 utzoo cincy teklabs
! ! ! ! ! ! ! ! ! !
! +--+----+-----+-+--+-------------+-------+------+ !
! ! !
! duke !
! ! !
! +------+---+-----------------------+--------+ !
! ! ! ! ! !

ucbopt ! hocsr--mhtsa----research mh135a harpo-----chico
: ! ! ! !

ucbcory ! ! eagle ihnss vax135 (Bell Labs)
(UCB) : ! ! ! ! !

ucbvax--++----------+--+--+-----+--+------+--------+
: @ ! ! ! (Silicon Valley)

ucbarpa @ (UCSD) sdcsvax ! menlo70--hao
: @ sdcattb-----+ ! ! !

ucbonyx @ +-----ucsfcgl sytek sri-unix
@ phonlab-----+

cca-unix sdcarl

Usenet, 1981

!- Uucp links
: Berknet links
@ Arpanet links

Credit:
ucbvax!mark

2: Application Layer 44

Usenet, 1993 Credit:
Brian Reid

2: Application Layer 45

❒ 1.4 million articles
daily

❒ ~ 360 GB daily
❒ Over a 100 Mbit/sec

link is > 8 hours!

Credit:
Karl L. SwartzUsenet today

2: Application Layer 46

Usenet is like a herd of performing elephants with
diarrhea – massive, difficult to redirect, awe-inspiring,
entertaining, and a source of mind-boggling amounts of

excrement when you least expect it.
– Professor Gene Spafford, Purdue University

2: Application Layer 47

FTP

2: Application Layer 48

ftp: the file transfer protocol

❒ transfer file to/from remote host
❒ client/server model

❍ client: side that initiates transfer (either to/from
remote)

❍ server: remote host
❒ ftp: RFC 959
❒ ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

9

2: Application Layer 49

ftp: separate control, data connections

❒ ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

❒ two parallel TCP connections
opened (both full duplex):

❍ control: exchange
commands, responses
between client, server.

“out of band control”
❍ data: file data to/from

server, can be used in
either direction, need not
always exist

❒ ftp server maintains “state”:
current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

2: Application Layer 50

ftp commands, responses

Sample commands:
❒ sent as ASCII text over

control channel
❒ USER username
❒ PASS password (sent

in clear text!)
❒ LIST return list of file in

current directory
❒ RETR filename retrieves

(gets) file
❒ STOR filename stores

(puts) file onto remote
host

Sample return codes
❒ status code and phrase (as

in http)
❒ 331 Username OK,

password required
❒ 125 data connection

already open;
transfer starting

❒ 425 Can’t open data
connection

❒ 452 Error writing
file

2: Application Layer 51

FTP Connection

❒ Client connects to port 21 on server; this
established the control channel

❒ Over the control channel, the client specifies the
characteristics including IP address and port
number for data connection (note: needn’t be on
the same machine as the client)

❒ Can ask server to set up a passive connection for
the data port as well (good for getting around
firewalls)

❒ Server tries to connect to data port as specified
by client

❒ Once established data connection can be used in
both directions

2: Application Layer 52

FTP Model

Server
Data

Transfer
Process

Server
Protocol

Interpreter

User
Protocol

Interpreter

User
Data

Transfer
Process

User
Interface

File SystemFile System

FTP Commands/ Replies

Data Connection

FTP server

Ftp client

2: Application Layer 53

Multimedia Applications

2: Application Layer 54

Multimedia Applications

❒ Audio/video conferencing, streaming audio, etc.
❍ On-demand playback: could download before beginning

playback; could support rewind, fast forward etc.; start-
up time and RTT not very important

❍ Live transmission: usually broadcast from one source like
TV or radio; much like on demand; no rewind or fast
forward; more sensitive to delay (how close to live?)

❍ Conferencing: interactive, start-up time and RTT matter
alot

❒ Examples: vic (video conferencing), vat (audio
conferencing), RealAudio, Quicktime,
WindowsMedia

10

2: Application Layer 55

Requirements of multimedia

❒ Several methods for compressing and encoding
voice/video; sender and receiver negotiate

❒ Ability to display stream (at degraded quality)
with lost packets

❒ Ability to specify the timing requirements
between packets of related data for smooth
playback

❒ Frame boundary indication
❒ Synchronization of related audio and video

streams
❒ No retransmission of lost packets

2: Application Layer 56

Real-time Transport Protocol
(RTP)
❒ TCP overhead to high; UDP not good enough
❒ Initially, each application had its own protocol,

implementing only those parts of TCP it really
needed on top of UDP

❒ RTP offers generalized real time transport
services

❍ Thin protocol; Runs on top of UDP
❍ Implements functionality commonly needed by multimedia

applications - timing reconstruction, loss detection,
security and content identification

❍ RFC 1889

2: Application Layer 57

Realtime Transport (?) Protocol

❒ Is this an application level protocol or a
transport protocol?
❍ Done at application level
❍ If TCP implemented at application level (good

project ☺), does that make it an application
level protocol or a transport level protocol?

❒ Where is the right place to put these
features?

2: Application Layer 58

Real-time Streaming Protocol
(RTSP)
❒ Network “Remote Control”

❍ Like FTP has data channel and control channel; RTSP is
the control channel for streaming audio/video

❍ Not used to deliver data; often uses RTP for the data
portion

❒ Establishes and controls audio and video delivery
❍ Single or multiple audio/video streams (time

synchronization if desired)
❍ Live feeds or stored clips

❒ Industry consortium announced in 1996 – since
then?

❍ Mostly development continued on proprietary versions:
Real Network’s (originally Progressive Networks)
RealMedia, RealAudio and RealPlayer , Quicktime,
WindowsMedia???

2: Application Layer 59

RTSP Requests

❒ DESCRIBE – description of presentation
❒ OPTIONS - get supported methods; capability

announcements
❒ SETUP – establish a new session
❒ PLAY – start playback/streaming; reposition
❒ ANNOUNCE – change description of presentation
❒ RECORD – start recording
❒ REDIRECT – redirect client to a new server; for

load balancing
❒ PAUSE –stop delivery but keep state
❒ TEARDOWN – stop delivery, remove state

2: Application Layer 60

Trying RTSP

❒ telnet servername 554

C: DESCRIBE rtsp://streamserver/rafile.rm RTSP/1.0\n\n
S: RTSP/1.0 200

11

2: Application Layer 61

Trying RTSP (2)
C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0
Transport: rtp/udp; compression; port=3056; mode=PLAY
S: RTSP/1.0 200 1 OK
Session 4231
C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
Session: 4231
Range: npt=0-
C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi

RTSP/1.0
Session: 4231
Range: npt=37
C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi

RTSP/1.0
Session: 4231
S: 200 3 OK

2: Application Layer 62

RTSP vs HTTP

❒ RTSP actually derived from HTTP
❍ Avoid mistakes (like always specify full URI)
❍ More methods of course

❒ RTSP server needs to maintain state from SETUP
to control PLAY command; HTTP server is
stateless (uses cookies to trick client into
remembering it)

❒ Data can be delivered in or out of band with RTSP;
HTTP data delivered in band

❒ RTSP is a symmetric protocol (client and server
can both isssue requests); HTTP client issues
requests

❍ Ex. server can announce new available streams (audio
from a new participant in a conference)

2: Application Layer 63

Session Description Formats

❒ Format for describing the number and
sources for all streams in a presentation

❒ May offer alternatives
❍ Different audio channels in various languages
❍ Different quality of audio/video for various BW

connections
❒ Specify timing requirements between

various streams
❒ Examples: SDF, SDP

2: Application Layer 64

SDP example

session (v 0)(o mhandley 2890844526 2890842807 IN IP4
126.16.64.4)

(s Sd seminar)(i A seminar on the session description protocol)
(u http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.01.ps)
(e M.Handley@cs.ucl.ac.uk (Mark Handley))

(c IN IP4 224.2.17.12/127)(t 2873397496 2873404696)
(a recvonly) (all (media (m audio 3456 VAT PCMU))
(media (m video 2232 RTP H261))

(media (m whiteboard 32416 UDP WB)(orient portrait))))

From:
http://www.cs.columbia.edu/~hgs/rtsp/sdf.html

2: Application Layer 65

From URL in web page to
streaming audio/video
<EMBED SRC=“http://server/foo.sdf” TYPE =

“application/x-audio”>
❒ HTTP gets session or presentation description file

(not part of RTSP) from a web server
❒ Presentation Description indicates RTSP server to

contact
❍ Note: RTSP is presentation description format neutral

❒ RTSP sets up a stream to control delivery
❒ RTSP used to indicate server that will actually

stream the data and by what protocol
❍ Ex. specify an RTP server to deliver the data

❒ Note: possibly 3 servers involved!

2: Application Layer 66

Alternative: HTTP Streaming

❒ Many sites simply send audio and video over HTTP
❒ When object arrives will be opened by appropriate

application just like Doc files or PDF files
❒ Estimate when it is safe to begin playback without

the playback outpacing the download
❒ Download mode and a limited streaming mode can

be supported this way
❍ Rewind? Fast forward?
❍ Can support full streaming if delays ok

12

2: Application Layer 67

Audio and Video on the
Internet
❒ Quicktime

❍ HTTP streaming or RTP and RTSP
❒ RealServer

❍ one control channel: RTSP over TCP
❍ one data channel: PNA (Progressive Networks Audio)

over UDP (?)
❍ Also can use RTSP to interleave data and control onto

one TCP channel (common configuration)
❒ WindowsMedia

❍ Similar to RealPlayer: control channel and data channel
❍ Harder to find details of protocols (surprise, surprise)
❍ But formats are not compatible (surprise, surprise)

2: Application Layer 68

More Application Level
Protocols?
❒ Telnet, Rlogin, SNMP (Simple Network

Management Protocol), Instant Messenger
(AIM), DHCP (BOOTP) , RPC, NFS,
X,Finger, Whois,IDENT…………………..

❒ You now know how to investigate any of
these on your own
❍ RFCs for open protocols, Run apps and trace

them, Get client/server source,…
❒ It would be a lot more fun to learn more

than application level protocols though,
right?

2: Application Layer 69

Roadmap

❒ We’ve looked at a bunch of application level
protocols (HTTP, DNS, SMTP, POP, IMAP, NNTP,
RTP, ..) – Lessons?

❍ Many were human readable – why?
❍ High level examples of protocol layering (SMTP, HTTP)
❍ Some ran on TCP, some on UDP, one on both – why?
❍ Used telnet/nslookup to interact with these protocols

more directly
❍ Traced them (What went in clear text?!)

❒ Food-for-thought: Design a “Telephone Protocol”
❒ Next.. How would we implement an application level

protocol ourselves?
❍ Socket API

❒ After that down to transport layer
2: Application Layer 70

Outtakes

2: Application Layer 71

telnet source

❒ We’ve been using telnet to examine various
application protocols

❒ telnet basically opens a TCP connection to
the specified port

❒ Getting the telnet source and examining it
would be a good exercise

2: Application Layer 72

Real Time Control Protocol
(RTCP)
❒ Real-time conferencing of groups of any

size within an internet.
❒ Provides source identification, quality-of-

service feedback from receivers to the
multicast group, synchronization of
different media streams

13

2: Application Layer 73

ReSerVation Protocol (RSVP)

❒ Host can use to request specific quality of service
from the network for a specific flow of data

❒ Must be processed and honored at each router to
be meaningful

❍ Works much like dynamic routing protocols; messages
processed by applications at user level

❍ If a flow is “admitted” then resource reservation
decisions will be made in form of packet classifier and
schedulers that will prioritize the use of resources

❒ Cisco’s take on RSVP
❍ http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_

doc/rsvp.htm

