CS 5142
Scripting Languages

11/25/2013

Debugging for
Scripting Languages

CS 5142 Cornell University 11/25/13

Reference

Literature

 Why Programs Fail: A Guide to Systematic Debugging.
Andreas Zeller. 2" edition, Morgan Kaufmann, 2009.

— Highly recommended. Today’ s class is based on 15t ed.

 From Automated Testing to Automated Debugging.
Andreas Zeller, 2000. Available at

http://www.infosun.fim.uni-passau.de/st/papers/computer2000/

* Working Effectively with Legacy Code. Michael
Feathers. Prentice Hall, 2005.

— Covers software vise and dependency breaking.

 How Debuggers Work. Jonathan B. Rosenberg.
Wiley, 19960.

— Not how to debug, but how to write a debugger.

CS 5142 Cornell University 11/25/13

Why Debugging in this Class?

Scripts are easier to debug Scripts are harder to debug

* Less code. * No static type checks.
 Higher-level code. « More “hacks”, code is
» Read-eval-print loop. less readable.

+ Easier to change. * Web applications are

hard to test.

Scripts help debug other applications

« Scripting-as-glue makes it easy to
run programs and check outputs.

« Scripting as application extension
can automate GUI tests.

CS 5142 Cornell University 11/25/13

Outline

« Systematic Debugging
* Debugging Tools
» Testing for Debugging

CS 5142 Cornell University 11/25/13

VBA

O© 0 Jd o 1 b W N R

L e e el e el
OO Ll D W N KL O

Example Bug

Sub AverageRows (Result(), Rows())
For I = 0 To UBound(Rows, 1)
For J = 0 To UBound(Rows, 2)

Result(I) = Result(I) + Rows (I, J)
Next J
Result(I) = Result(I) / (1 + UBound(Rows, 2))
Next I
End Sub
Sub Main ()
Dim x (2, 3)
x(0, 0) =1: (0, 1) = 2: x(0, 2) =0
x(1, 0) =0: x(1, 1) = 0: x(1, 2) = 2
Dim y (2)
Call AverageRows (y, Xx)
Debug.Print y(0) & ", " & y(1) avg(1,2,0) | avg(0,0,2)
End Sub Expected | 1 0.6667
Observed | 0.75 0.5

CS 5142 Cornell University 11/25/13

Log Book
(Example Debugging Session)

Hypothesis Experiment Observation | Conclusion
Round 1 | Result(i) wrong | Breakpoint at 6, | Result(i)==3 | Hypothesis is
before Line 6 inspect Result(i) wrong , correct
numerator
Round 2 | Ubound(Rows,?2) | Breakpoint at 6, | Rows(0) Ubound(Rows,2)
wrong before inspect Rows(0) |indices go is 3: array too
Line 6 bounds fromO0to 3 |large, should go
from 0 to 2
Round 3 | Ubound(x,2)==3 | Breakpoint at 11, | x(0) indices | Array x (0) is too
inspect x(0) go from large, should go
bounds Oto3 from 0 to 2
Round 4 | Upper bounds in | Dim x(1,2) and | Output 1 Bug is fixed
Dim are wrong Dim y(1) and 0.6667

CS 5142 Cornell University 11/25/13

Space+Time Search

e

x(2) Yy Result Rows

E:E | E:E:E:E |- = =

2:E | E:E:E:E |- = =

2:E | E:E:E:E |E :E E |- =

2:E | E:E:E:E |E :E :E |alias(y/Malias(x

2:E |E:E:E:E |3 :E :E |alias(y}dalias (x)]
2:E | E:E:E: 0. :E :E |alias(y) |alias(x)
2:E | E:E:E: :0.5:E | - =

e Each line (time step) is program state (memory space)

* This diagram shows only a few selected states
(time = many more steps, even for our simple program)

 Most programs have larger state
(space = thousands of variables)

 Debugging is a search in time and space

CS 5142 Cornell University 11/25/13 7

Defects, Infections, Failures

Defect = wrong code

v'Sane State
N+ that turns sane state
) into infection
x Infection” x»" T _
= wrong state s N Infection spreads.
LEEEEoE

Failure = wrong output
Zeller avoids the word observed by user
“bug”, since it could mean
any of the above.

CS 5142 Cornell University 11/25/13 8

o The Scientific Method

(Backup first)

Hypothesis E.g., from looking at code

S.40lsiglagl=ale - E.g., run with certain input

Repeat

®)0)= 2 zfulelal | E.g., using print statement

Conclusion E.g., step of infection chain

(Fix similar problems)

CS 5142 Cornell University 11/25/13

Reasoning Techniques

Deduction General — | 0 runs (look | Finding hypotheses by
Specific at code) “eye-balling” the code
Observation 1 run (and | Finding needle (infection)
Sensors) in hay stack (space+time)
Induction Specific — | Many Finding hypotheses by
General similar runs | brute force
Experiment =1 syste- Confirming or rejecting
matic runs | hypotheses

CS 5142 Cornell University 11/25/13 10

Search Space Reduction

?
?
?
?
?
?
?
?

ST R T R T R TR T R T R T

ST R T R T R TR T R T R T

Separate
relevant
from irrelevant

Separate

sane
from infected

11

Outline

* Systematic Debugging
* Debugging Tools
* Testing for Debugging

CS 5142 Cornell University 11/25/13

12

e What

Static Checking

— Automatic deduction of common defects
— Do this habitually before you need to debug

* How
— VBA:
— Perl:
— PHP:
— JS:

continuous compilation; option explicit
use strict; use warnings; perl -w

php -1
http://www.jslint.com

13

CS 5142 Cornell University 11/25/13

Print Statements

e What

— Observation to check hypothesis in experiment

— Useful to automate printing source location

* How
— VBA: Debug.print expr
— Perl: print FILE ,':', LINE ,":\n"
— PHP: echo FILE .':'. LINE .':';
var dump (expr) ;
— JS: try{throw Error();}catch(e) {alert(e.stack) ;}
(Mozilla Firefox only)

CS 5142 Cornell University 11/25/13 14

Assertions

e What

— Reduces search space by categorically ruling out
some infections in some of the data

— May be disabled for production run

* How
— VBA: If 'cond Then Error 1
— Perl: doSomething or die $!;
— PHP: assert (cond) ;

—JS: if('cond) alert ("message") ;

CS 5142 Cornell University 11/25/13 15

e What

Dynamic Checking

— Turn silent infection into user-visible fault

— System assertion as opposed to user assertion

 How
- C:

— Perl:

Valgrind asserts absence of common memory
errors, e.g., using value before first assignment

Taint mode (perl -T) asserts that inputs are
sanitized, e.g., to avoid SQL injection

Sanitizer (regexp) (V4

Input 4 Output

CS 5142 Cornell University 11/25/13 16

REPL: Read-Eval-Print Loops

e What

— Fast turn-around for ad-hoc experiments

— Call one function at a time, without harness

* How
— VBA:
— Perl:
— PHP:
— JS:

Visual Basic Editor>Tools2>Immediate Window
perl -wdel

php -a, ifitis compiled that way
Firefox=2>Tools=>Web Developer—=>Error Console

CS 5142 Cornell University 11/25/13 17

Interactive Debuggers

e What

— Experiments such as “break at 9, look at x~

— REPL + break points + stack inspection

* How

— VBA: integrated with editor
— Perl: perl -wd file.pl
— PHP: http://www.php.net/debugger

— JS: Firefox Venkman add-on; debug closure trick;
Firebug

CS 5142 Cornell University 11/25/13 18

g Debug Closure Trick

By Steve Yen: https://code.google.com/p/trimpath/wiki/TrimBreakpoint

<html><head><script>
function breakpoint (evalFunc, msg) {
var expr = "arguments.callee";
var result;
while (true) {

var line = "\n-----—--—————————————- \n";

expr = prompt ("BREAKPOINT: " + msg + "\n"
+ (result ? "eval('" + expr + "') -> " + line + result + line : "\n")
+ "Enter an expression:", expr);

if (expr == null || expr == "") return;

try {

result = evalFunc (expr) ;
} catch (e) {
result = e;
}
}

}
</script></head><body><script>

function foo(x, y) {
breakpoint (function (expr) {return eval (expr);}, "bar");

}
foo (2, 4);
</script></body></html>

CS 5142 Cornell University 11/25/13 19

Delta Debugging Example

sub sort ref to array { #buggy!
my @sorted = sort Q@ ;
return $sorted|[0];

}

sub test sort {
my Sarrayref = sort ref to array($ [0]);
for (my $i=0; $i+l < Q@$arrayref; S$i++) {
if (Sarrayref->[$i] > Sarrayref->[$i+1]) {
return 'fail'; # x
}
}

return 'pass'; # V

}

our $min = ddmin([1,3,5,2,4,6], \&test sort);
print "minimized to ", @Smin, "\n";

CS 5142 Cornell University 11/25/13

135246 %

246 v

135 v

5246 x

46 vV

52 x

2 v

5 v
52

20

Delta Debugging Algorithm

By Andreas Zeller: http://www.whyprogramsfail.com/resources.php

sub ddmin {
my ($inputs, Stest) = @ ;
Stest->([]) eq 'pass' && Stest->($inputs) eq 'fail' or die;
my S$splits = 2;
outer: while (2 <= @$inputs) {
for my $subset (subsets($inputs, $splits)) {
my Scomplement = list minus ($inputs, $subset);
if ('fail' eq S$test->($complement)) ({
Sinputs = $complement;
Ssplits-- if $splits > 2;
next outer;

}
}
last outer if S$splits == @$inputs;

Ssplits = 2 * $splits < @$inputs ? 2 * $splits : @$Sinputs;
}

return $inputs;

}

CS 5142 Cornell University 11/25/13 21

_ Perl | |
Delta Debugging Helper Functions

sub subsets {

my ($fullset, $splits) = @ ;

my (@result;

my $bin size = int((@S$fullset + $splits - 1) / $splits);

for (my $i=0; $i<$splits; Si++) {
my ($start, $end) = ($i * $bin size, ($i + 1) * $bin size);
if ($end > @$fullset) { $end = @S$fullset; }
my (@subset;

for (my $j=$start; $j<$end; $j++) { push (@subset, $fullset->[$j]; }
push Q@result, [@subset];

}
return (@Qresult;

}

sub list minus {
my ($fullset, $subtract) = @_
my (%subtract, @result);
for (@$subtract) { S$subtract{$ } = 1; }

for (@$fullset) { push(@result, $) unless $subtract{$_}; }
return [Qresult];

.
14

© Martin Hirzel G2223033:002NYErZ2/17/2008

Outline

* Systematic Debugging
* Debugging Tools
* Testing for Debugging

CS 5142 Cornell University 11/25/13

23

rack

TRAFFIC

Enter in bug database

eproduce | Get all the inputs

> | 0|

utomate |Create test harness

- Ind origin | yse scientific method
- OCUS to trace back

solate Infection chain
C orrect Remove defect

CS 5142 Cornell University 11/25/13

24

|
Bug Tracking

F ind origin

Life Cycle of a Problem in Bugzilla =23

| solate
C orrect

unconfirmed

invalid | duplicate

new assigned invalid | duplicate resolved verified

| fixed | wontfix
| worksforme

reopened closed

CS 5142 Cornell University 11/25/13 25

Concepts T rack

A utomate

Bug _]argon F ind origin

F ocus

| solate

C orrect

Quantum | Repeatable,

Bohr bug physics manifests reliably
. Disappears due to
Heisenbug Unfﬁg?'gy observation probe
P P (e.g., time dependent)
Mandelbrot Causes are comple>_<,
Mandelbug set appears nondetermi-

nistic (but is Bohr bug)

Schrodinger’s | Hidden until first person
Schroedinbug | cat, thought |notices it, then becomes
experiment |show-stopper

CS 5142 Cornell University 11/25/13 26

Concepts T rack

A utomate
Sources of Input
 arec
Static data. Permissions Browser Time
GUIl input — <— Randomness
Program
Text input — <— Debugging tools

Difficult to reproduce problem if
e User’ s input # developer’ s input
* |nput is large and/or time sensitive

CS 5142 Cornell University 11/25/13 27

Concepts T rack

] R eproduce
Software Vise I

F ocus
| solate
C orrect

e Vise = holds an artifact firm for working on it

e Perl makes it easy to build vise for batch application
e VBA allows you to build vise for GUI application

e How to build vise for just one unit of a program?

CS 5142 Cornell University 11/25/13 28

Concepts T rack

System Tests vs. Unit Tests IS

F ocus
| solate
\ l / C orrect
Rest of
Unit program

e System test = test entire application
* Unit test = test part of system in isolation

* Why use unit tests in debugging?
— Focus: less code = smaller hay stack
— Speed: faster to run experiment
— Prevent side effects: e.g., to database
— Verify fix: make sure the defect is gone

CS 5142 Cornell University 11/25/13 29

Concepts T rack

. ReEroduce
Dependency Breaking oo

F ocus
| solate
. . C orrect
* To test a unit, must break its dependency on
the rest of the system
Before After
Unit under test |Rest of sxstem| Unit under test | Software vise |

call experiment

dependency on dependency on
e.g. database mock object

return observation

CS 5142 Cornell University 11/25/13 30

Concepts T rack

R .eErod.uc.:e
Se a m S F ind origin

F ocus
| solate
C orrect

Goal Replace dependency by mock object
Do not modify code of unit under test

Solution | Use virtual method dispatch as “seam”

Unitunder | can [Interface for
test other unit
| o |
Ful _
functionality Mock object

Challenge |Dependency may not be on method call
Refactor to object-oriented style first

CS 5142 Cornell University 11/25/13 31

Concepts T rack
R eproduce

Minimal Tests m’? frfé’@?i“?n

| solate
C orrect

* Using delta debugging, either
automatically or by hand

* The test to keep is the minimal end result

* If you submit a bug report to a project, it
will get fixed faster if you minimize it first

* Gecco BugAThon

CS 5142 Cornell University 11/25/13 32

Concepts T rack

R eproduce

Regression Testing =~ cuo

F ocus

| solate

* Regression
— Shift towards less perfect state
— In software: when old bugs appear again

* Regression testing
— Check that fixed bugs are still fixed

« Recommended practice

— Keep the tests you use during debugging
— Run them frequently (at least daily)

— To run many tests often, each individual
test must be fast = use unit tests

CS 5142 Cornell University 11/25/13 33

| ast Slide

« Today’ s lecture
— Scientific method

— Tools for scripting
language debugging
— TRAFFIC

CS 5142 Cornell University 11/25/13

34

