
CS5142 Cornell University
10/25/13

1

CS 5142
Scripting Languages

10/28/2012
Ruby, Rails

Outline

•  Ruby
•  Rails

© Martin Hirzel 2 CS5142 Cornell University
10/25/13

2

CS5142 Cornell University
10/25/13

3

Methods, Blocks, Procs
•  Declaration: def id [(arg*)] … end

–  Always invoked on an object (a.k.a., the receiver)
–  self refers to the object on which the method was

invoked

•  Any invocation may be followed by a block
– yield statements will invoke the block
– def mymethod(x) yield x end
– mymethod(3) {|arg*| …}

•  A block is represented by a Proc object
– p = Proc.new {|x| puts x }
– def mymethod(b, x) b.call(x) end

Ruby

CS5142 Cornell University
10/25/13

4

Lambdas
•  lambda is a method in the Kernel module that

also creates a Proc
–  l = lambda {|x| puts x }
–  l.call()

•  A proc is the object form of a block,
behaves like a block

•  A lambda behaves like a method
•  Lambdas are closures

– Binds the the variables in lexical scope where
the lambda is defined (including self)

Ruby

CS5142 Cornell University
10/25/13

5

Lambdas vs. Blocks
Ruby

def proc_return
 p = Proc.new { return "Proc.new"}
 p.call
 return "proc_return method finished"
end

def lambda_return
 l = lambda { return "lambda" }
 l.call
 return "lambda_return method finished"
end

puts proc_return
puts lambda_return

CS5142 Cornell University
10/25/13

6

Using Objects
Ruby

a1 = Apple.new(150, "green")
a2 = Apple.new(150, "green") Constructor calls

a2.color= "red" Setter call
puts a1.prepare("slice") + "\n"
puts a2.prepare("squeeze") + "\n" Method calls

CS5142 Cornell University
10/25/13

7

Defining Classes Ruby

class Fruit
 def initialize(weight_)
 @weight = weight_ end
 def weight
 @weight end
 def weight= (value)
 @weight = value end
 def pluck
 "fruit(" + @weight + "g)" end
 def prepare(how)
 how + "d " + pluck end
end

Fruit
@weight

initialize()
pluck()
prepare()

•  All fields are private, external use requires accessors
(e.g., @weight, weight, weight=)

•  Classes are open, can add additional fields+methods

CS5142 Cornell University
10/25/13

8

Class Definition Gotcha Ruby

class Fruit
 @weight = 0;
 def initialize(weight_)
 @weight = weight_
 end
end

•  Doesn’t behave as you’d expect
•  One is a class variable
•  The other is an instance variable

These two @weight variables
are different!

CS5142 Cornell University
10/25/13

9

Self Ruby

•  Evaluates to the current object

•  Remember that class is a function in Ruby

•  When class is invoked, self points to the Fruit
class, not an instance of the Fruit class

•  When initialize is invoked, self points to the
Fruit instance

CS5142 Cornell University
10/25/13

10

Self with Blocks Ruby

class A
end
class B
 def initialize
 @a = A.new
 end
 def m
 @a.instance_eval { puts self }
 end
end
b = B.new
b.m

#<A:0x007fe42b1063c0>

CS5142 Cornell University
10/25/13

Inheritance in Ruby
class Fruit
 def initialize(weight_)
 @weight = weight_ end
 def weight
 @weight end
 def weight= (value)
 @weight = value end
 def pluck
 "fruit(" + @weight + "g)" end
 def prepare(how)
 how + "d " + pluck end
end

Ruby

class Apple < Fruit
 def initialize(weight_, color_)
 @weight = weight_
 @color = color_
 end
 def color
 @color end
 def color= (value)
 @color = value end
 def pluck
 self.color + " apple" end
end

11

Apple
@weight
@color

initialize()
pluck()
prepare()

Fruit
@weight

initialize()
pluck()
prepare()

11

Scopes and Visibility
•  Visibility of class members

–  All instance variables are private
–  Methods can be private, protected, or public

•  Accessor generation

Ruby

class Fruit
 attr_accessor :weight
 def initialize(weight_)
 @weight = weight_
 end
 def pluck
 "fruit(" + @weight + "g)"
 end
 def prepare(how)
 how + "d " + pluck
 end
end

Fruit
@weight

initialize()
pluck()
prepare()

Generates @weight field
and weight/weight= methods

© Martin Hirzel 12 CS5142 Cornell University
10/25/13

12

CS5142 Cornell University
10/25/13

13

Structure of a Ruby Application
•  require file
•  Module = like class, but can’t be instantiated

–  Class can include (“mix in”) one or more
modules

–  Members of mix-in module are copied into class
–  Later definition with same name overrides earlier
–  Module can inherit from other module, but not class
–  Module can contain methods, classes, modules

•  Module Kernel is mixed into class Object
•  Top-level subroutines are private instance

methods of the Kernel module
–  Visible everywhere, can’t call with explicit receiver

Ruby

CS5142 Cornell University
10/25/13

14

Arrays

•  Initialization: $a=[1,2,3]
–  With block: $a=Array.new(10){|e|2*e}

•  Indexing: $a[…]
–  Zero-based, contiguous, integers only
–  Negative index counts from end

•  Deleting: $a.clear(), $a.compact(),
$a.delete_at(i)

•  Lots of other methods

Ruby

CS5142 Cornell University
10/25/13

15

Hashes

•  Initialization:
$h = {'lb'=>1,'oz'=>16,'g'=>453}

•  Indexing: $h['lb']
– Can use any object as key, not just strings

•  Deleting: $h.clear(), $h.delete(k)
•  Lots of other methods
•  Can have a “default closure”:

return value for keys not explicitly stored

Ruby

Outline

•  Ruby
•  Rails

© Martin Hirzel 16 CS5142 Cornell University
10/25/13

16

CS5142 Cornell University
10/25/13

17

Rails

$ rails new Hello
$ cd Hello
$ rails server

Rails “Hello World”

CS5142 Cornell University
10/25/13

18

MVC

Model View Controller

Controller

Model

View

User

uses

manipulates updates

sees

CS5142 Cornell University
10/25/13

19

Rails

Create a controller named welcome with
action index
$ rails generate controller welcome index

$ vi config/routes.rb
uncomment root to: "welcome#index”

Rails Routing

CS5142 Cornell University
10/25/13

20

Rails

$ echo "<p>Hello Class</p>" >> \
app/views/welcome/index.html.erb

Modify View

CS5142 Cornell University
10/25/13

21

Rails

$ echo "<p>Hello Class</p>" >> \
app/views/welcome/index.html.erb

Modify View

CS5142 Cornell University
10/25/13

22

Rails

$ pwd
~/rails/Hello/app/controllers

$ cat welcome_controller.rb
class WelcomeController <
ApplicationController

 def index
 end
end

Modify Controller

CS5142 Cornell University
10/25/13

23

Ruby Documentation

•  http://www.ruby-lang.org
•  http://www.rubyonrails.org
•  Book: The Ruby Programming Language.

David Flanagan, Yokihiro Matsumoto.
O’Reilly, 2008

Reference

CS5142 Cornell University
10/25/13

24

Evaluating Ruby
Soap-Box

Strengths
•  Rails
•  Purely object

oriented
•  Perl-like =~ and

default variables

Weaknesses
•  Less popular than

Java and PHP
•  Unusual syntax

Last Slide

Administrative

•  No announcements.

•  Today’s lecture
– Ruby

© Martin Hirzel 25 CS5142 Cornell University
10/25/13

25

