
CS 5142 Cornell University 
9/18/13 

1 

CSCI-GA.3033.003 
Scripting Languages 

9/25/2013 
Prelim 1 Review 



CS 5142 Cornell University 
9/18/13 

2 

Outline 

•  Associativity and Precedence 
•  Typing 
•  Properties 
•  Callbacks 



(…) Subexpression; Call; Indexing 
^ 2 L Exponentiation 
+, - 1 Identity, negation 
*, / 2 L Multiplicative 
\ 2 L Integer division 
Mod 2 L Modulus 
+, - 2 L Additive; String concatenation 
& 2 L String concatenation 
<<, >> 2 L Bit shift 
=, <>, <, <=, >, >=, Is 2 L Comparison 
Not 1 Negation 
And, Or, Xor, Eqv, Imp 2 L Logic (not all same precedence) 
[Set] … = … 2 Assignment statement 

CS 5142 Cornell University 
8/30/13 

3 

Operator Characterization 
• Concepts 

• Arity: 
• 1 = unary 
• 2 = binary 

• Associativity: 
• L = left 

• R = right 

• Precedence: 
• from high 

to low 



CS 5142 Cornell University 
8/30/13 

4 

• Concepts 

Arity, Precedence, Associativity  

Arity Number of 
operands 

-2 
2 - 2 

unary 
binary 

Precedence Binding 
strength 

2+2*2 
(2+2)*2 
2+(2*2) 

* has higher 
precedence 
than + 

Associativity Grouping 
direction 

2/2/2 
(2/2)/2 
2/(2/2) 

/ is left-
associative 

• Precedence and associativity in programming 
usually follows the conventions from math. 



CS 5142 Cornell University 
9/18/13 

5 

Outline 

•  Associativity and Precedence 
•  Typing 
•  Properties 
•  Callbacks 



Typing 
•  Strong typing = no implicit type conversion 
•  Weak typing = implicit type conversion  
•  Static typing = check for type errors at compile time 
•  Dynamic typing = check for type errors at run time 
•  Gradual typing = checks for some errors at compiler 

time, some at run time. Directed by which parts of the 
program have explicit types. (Ex. option explicit in 
VBA) 

CS 5142 Cornell University 
9/18/13 

6 



Typing 
•  Explicit typing = declare the type in your code 

–  Java 

•  Implicit typing = compiler infers the type 
–  ML language,  
–  VBA type declaration characters $ means string 

CS 5142 Cornell University 
9/18/13 

7 



CS 5142 Cornell University 
9/18/13 

8 

Weak/Strong, Static/Dynamic Typing 
Concepts 

ML 
Java 

JavaScript 
PHP 

Scheme 

Perl 
assembler 

C 

Static typing 
(compile-time checks) 

Strong typing 
(explicit conversions) 

Weak typing 
(implicit conversions) 

Dynamic typing 
(runtime checks) 

VBA 



CS 5142 Cornell University 
9/18/13 

9 

Outline 

•  Associativity and Precedence 
•  Typing 
•  Properties 
•  Callbacks 



Properties 

•  Read and written like fields (dot syntax) 
•  Accesses are translated to set/get 

methods 
•  Have easy-to-read syntax, but can 

implement complex functionality 
•  Can be indexed. Seems like an array, 

but associates a behavior with each 
read/write  

CS 5142 Cornell University 
9/18/13 

10 



Properties 
Public Function GetLength() As Double 
  GetLength = Sqr(X ^ 2 + Y ^ 2) 
End Function 
Public Sub SetLength(NewLen As Double) 
  OldLen = GetLength 
  If OldLen = 0 Then 
    X = NewLen 
    Y = 0 
  Else 
    X = X * NewLen / OldLen 
    Y = Y * NewLen / OldLen 
  End If 
End Sub 

CS 5142 Cornell University 
9/18/13 

11 



CS 5142 Cornell University 
08/04/13 

12 

Properties vs. Fields 
•  Both: dot notation look&feel 

–  Writable: a1.color = "red” 
–  Readable: Debug.print a1.color 

•  Properties only: active (associated behavior) 
–  E.g., update graphical representation 

•  Properties only: may be indexed, like arrays 
–  cake.ingredient("topping") = a1 

•  Other languages with properties: 
–  E.g., PHP, Delphi, C# 

• Concepts 



CS 5142 Cornell University 
08/04/13 

13 

Common Uses of Properties 
• Concepts 

Simple (field-like) 
•  Visual update 
•  Invariant checking 

–  Filter illegal values 
–  Read-only 
–  Copy on write 

•  Logging 

Indexed (array-like) 
•  Collections 

–  Resizable array 
–  Hash map 

•  Persistence 
–  File 
–  Database 
–  Cookie 



CS 5142 Cornell University 
08/04/13 

14 

Collections 
• VBA 

• Dim col As Slides 
• Set col = ActivePresentation.Slides 
• Dim i As Integer 
• Debug.Print "for-loop, indexed property access" 
• For i = 1 To col.Count 
•   Debug.Print col.Item(i).Name 
• Next i 
• Debug.Print "for-loop, default property access" 
• For i = 1 To col.Count 
•   Debug.Print col(i).Name 
• Next i 
• Dim s As Slide 
• Debug.Print "for-each loop" 
• For Each s In col 
•   Debug.Print s.Name 
• Next s 



CS 5142 Cornell University 
08/04/13 

15 

Powerpoint Object Model 
• Reference 

•  The complete object 
model is much larger 

•  See Visual Basic help 
in editor 

•  Also in MSDN library: 
→ Office development 
→ Microsoft Office 2003 
→ Office 2003 
→ VBA reference 
→ Powerpoint help 
→ Object model 

• Application 

•     CommandBars 
•         CommandBar 

•     DocumentWindows 
•         Selection 

•             ShapeRange > 
•     Presentations 

•         Presentation > 
• ActiveWindow 

•     Selection 
•         SlideRange 

•             Shapes 
•                 Shape 

• ActivePresentation 
•     Slides 

•         Slide 
•             Shapes > 



CS 5142 Cornell University 
08/04/13 

16 

Object Model 

•  Object-oriented API 
for embedded scripts 

•  Other examples: 
–  Object models for 

other Microsoft apps 
–  DOM = document 

object model for XML 

• Concepts 

• Application 

•     CommandBars 
•         CommandBar 

•     DocumentWindows 

•         Selection 

•             ShapeRange > 

•     Presentations 

•         Presentation > 

• ActiveWindow 

•     Selection 
•         SlideRange 

•             Shapes 

•                 Shape 

• ActivePresentation 

•     Slides 

•         Slide 

•             Shapes > 

• Top-level 
“creatable 
objects” 

• “has-a” / 
“contains” 
relationship 

• “>”: more 
objects 
(not shown) 

• Gray box: 
simple object 

• White box: 
collection 



Object Model Usage 

CS 5142 Cornell University 
9/18/13 

17 

 Dim S As PowerPoint.Slide 
 Set S = ActivePresentation.Slides( _ 
    ActivePresentation.Slides.Count) 



CS 5142 Cornell University 
9/18/13 

18 

Outline 

•  Associativity and Precedence 
•  Typing 
•  Properties 
•  Callbacks 



Callbacks 

CS 5142 Cornell University 
9/18/13 

19 

•  A callback is a function or block of code that 
is passed to some other code as a parameter.  

•  It is expected that the callee will “call back” to 
the called at the appropriate time 



CS 5142 Cornell University 
08/06/12 

20 

Callback Mechanisms 
VBA form Subroutine in form with mangled name 
VBA class WithEvent / RaiseEvent statements 

Java Pass object on which to call method 
Perl, Python, 
JavaScript Pass anonymous function (lambda) 

C, C++ Pass function pointer 
C++ Pass object on which to call “()” operator 

SmallTalk Pass code block 
PHP Pass name of function as string 

• Concepts 



CS 5142 Cornell University 
08/06/12 

21 

Call-backs 
• VBA code • Interpreter • User 

• frmLemonStar.Show() 
• wait for user input 

• edit text box 

• click button 

• cmdPaint_Click() 

• return from handler 

• return from “Show” 

• Concepts 



CS 5142 Cornell University 
9/18/13 

22 

Last Slide 
•  Good luck! 
•  Bring a pencil or pen 
•  Closed book. No notes, phones, etc. 

Administrative 


