
CS 5142 Cornell University
9/20/13

1

CSCI-GA.3033.003
Scripting Languages

9/20/2013
Context and Modules (Perl)

Scripting as Glue

CS 5142 Cornell University
9/20/13

2

Outline

•  Programming in the large
•  Scripting as glue

CS 5142 Cornell University
9/20/13

3

Modules
•  Module = file p/q.pm that starts with

declaration package p::q
–  Group library functions for reuse
–  E.g., Math::BigInt, arbitrary precision arithmetic

•  Module import: access with unqualified names
–  Compile-time use p; runtime require p;
–  Disable locally: no p;

•  Pragma = pragmatic module
–  Changes Perl behavior in fundamental way
–  E.g., strict, forces variable declarations

Perl

CS 5142 Cornell University
9/20/13

4

Module Example
Perl

use strict; use warnings; # put this code in a
package apple; # file apple.pm
sub create {

 my ($weight, $color) = @_;
 return { WEIGHT => $weight, COLOR => $color };
}
sub pluck {
 my $ref_to_hash = $_[0];
 return $ref_to_hash->{COLOR} . " apple";

}
sub prepare {
 my ($ref_to_hash, $how) = @_;
 return $how . "d " . pluck($ref_to_hash);
}
1 # return true = success
#!/usr/bin/perl
use strict; use warnings; use apple; # note the "use apple"
our $fruit = apple::create(150, "red"); # from a different file

print apple::prepare($fruit, "slice"), "\n"; # "sliced red apple"

CS 5142 Cornell University
9/20/13

5

Pluggable Type Systems

•  User chooses between multiple alternative
optional type systems, e.g., in Perl:
–  use strict "vars"; no implicit declarations
–  use strict "refs"; no string→ref conversion
–  use strict "subs"; no bareword strings
–  use warnings; same as perl -w
–  perl -T taint-flow checking

•  Motivation: trade-off between ease of writing,
maintainability, robustness, and security
–  Similar to “Option Explicit” in VBA

Concepts

CS 5142 Cornell University
9/20/13

6

Structure of a Perl Application
Perl

Compilation unit Usually, file; also, -e, eval arg
Package Named global namespace

may vary by block; usually: one per file
Module p/q.pm file with package p::q
Pragma Module that changes language
Class Package used to bless reference
Subroutine Named subroutines don’t nest
Statements In subroutine or directly in file

CS 5142 Cornell University
9/20/13

7

Using Objects
Perl

#!/usr/bin/perl

use strict; use warnings; use Apple; Import class module
our $a1 = new Apple(150, "green"); Constructor call forms

(indirect obj vs. arrow) our $a2 = Apple->new(150, "green");

$a2->{COLOR} = "red"; Set hash entry
print $a1->prepare("slice"), "\n"; Method call

(arrow form) print $a2->prepare("squeeze"), "\n";

CS 5142 Cornell University
9/20/13

8

Classes and Objects
Concepts

Apple
WEIGHT
COLOR

new()
pluck()
prepare()

$a1 : Apple
WEIGHT = 150
COLOR =
“green”

$a2 : Apple
WEIGHT = 150
COLOR = “red”

class = package used
to bless references

name

instance methods

instance name : blessing package

fields (hash keys+values)

objects
(blessed
references)

class method

fields (hash keys)

CS 5142 Cornell University
9/20/13

9

Defining Classes
Perl

use strict; use warnings; package Fruit;
sub new {
 my ($cls, $weight) = @_;
 return bless({ WEIGHT => $weight }, $cls);
}
sub pluck {
 my $self = $_[0];
 return "fruit(" . $self->{WEIGHT} . "g)";
}
sub prepare {
 my ($self, $how) = @_;
 return $how . "d " . $self->pluck();
}
1

• Invocant (class name or object) is first argument
• bless(ref,pkg) associates object with class

Fruit
WEIGHT

new()
pluck()
prepare()

CS 5142 Cornell University
9/20/13

10

Inheritance in Perl
Perl

use strict; use warnings; package Fruit;
sub new {
 my ($cls, $weight) = @_;
 return bless({ WEIGHT => $weight }, $cls);
}
sub pluck {
 my $self = $_[0];
 return "fruit(" . $self->{WEIGHT} . "g)";
}
sub prepare {
 my ($self, $how) = @_;
 return $how . "d " . $self->pluck();
}
1
use strict; use warnings; use Fruit; package Apple;
our @ISA = ("Fruit");
sub new {
 my ($cls, $weight, $color) = @_;
 return bless({ WEIGHT => $weight, COLOR => $color }, $cls);
}
sub pluck {
 my $self = $_[0];
 return $self->{COLOR} . " apple";
}
1

Apple
WEIGHT
COLOR

new()
pluck()
prepare()

Fruit
WEIGHT

new()
pluck()
prepare()

CS 5142 Cornell University
9/20/13

11

Virtual Dispatch
Concepts

use strict; use warnings; package Fruit;
sub new {
 my ($cls, $weight) = @_;
 return bless({ WEIGHT => $weight }, $cls);
}
sub pluck {
 my $self = $_[0];
 return "fruit(" . $self->{WEIGHT} . "g)";
}
sub prepare {
 my ($self, $how) = @_;
 return $how . "d " . $self->pluck();
}
1
use strict; use warnings; use Fruit; package Apple;
our @ISA = ("Fruit");
sub new {
 my ($cls, $weight, $color) = @_;
 return bless({ WEIGHT => $weight, COLOR => $color }, $cls);
}
sub pluck {
 my $self = $_[0];
 return $self->{COLOR} . " apple";
}
1

Apple
WEIGHT
COLOR

new()
pluck()
prepare()

Fruit
WEIGHT

new()
pluck()
prepare() Use class of

reference to
decide which
method to call

CS 5142 Cornell University
9/20/13

12

Outline

•  Programming in the large
•  Scripting as glue

CS 5142 Cornell University
9/20/13

13

Gluing Perl using Bash: Pipes

•  Bash (Bourne again shell) is an interactive
command prompt for Unix or Linux

•  At the bash shell prompt, prog1 | prog2
pipes STDOUT of prog1 to STDIN for prog2

•  Perl scripts work well in pipelines:
read from STDIN, write to STDOUT

•  Idiomatic Perl facilitates one-liners, e.g.:

•  Good for one-time use, bad for readability
ls -l | perl -e'while(<>){/(\d+)\s(\S+\s+){3}(\S+)$/;print "$1 $3\n"}' | sort -rn | head -5

Perl

CS 5142 Cornell University
9/20/13

14

Gluing Bash using Perl: `…`

•  Perl provides many common Unix
commands as library functions
– chdir, chmod, kill, mkdir, rmdir, …

•  Like bash, Perl has file test operators
– -d, -e, -f, -r, -w, -x, …

•  Perl programs can embed shell
commands with `…`
– Returns output as string
– Error code goes in $?

Perl

CS 5142 Cornell University
9/20/13

15

Gluing Perl using Perl: eval

•  Perl scripts can interpret embedded Perl
code using eval
#!/usr/bin/perl
print "please enter an operator, e.g., '+':\n";
$op = <>;
chomp $op;
$command = 'print (42 ' . $op . ' 7)';
print "running the command '$command':\n";
eval $command;
print "\n";

•  Module Safe provides restricted eval
(reval) as sandbox for untrusted code

Perl

CS 5142 Cornell University
9/20/13

16

Gluing Text using Perl: Heredocs
•  Heredoc = multi-line text embedded in Perl

#!/usr/bin/perl
print "-Error-\n", <<POEM, "-David Dixon-";
Three things are certain:
Death, taxes, and lost data.
Guess which has occurred.
POEM

•  Variations:
–  <<'id' suppress interpolation
–  <<space lines up to blank line
–  print(<<id1, <<id2); stacked heredocs

Perl

CS 5142 Cornell University
9/20/13

17

Common Perl Mistakes
Detected Message Typical example
Compiler Missing curleys if($x) print "x"
User == instead of eq die if("1x"=="1y")
Compiler No comma allowed

after filehandle
print STDOUT, "hi"

Interpre-
ter

Modification of a
read-only value

$x=10; $$x=20;

Perl

And many more …

CS 5142 Cornell University
9/20/13

18

Evaluating Perl

Strengths
•  String processing

–  Regular expressions
–  Interpolation

•  One-liners
–  Many operators
–  Implicit operands

•  Vibrant community
•  Portability

Soap-box

Weaknesses
•  Write-only language
•  Need references to

nest arrays/hashes
•  Grafted-on features

–  Object-orientation
–  Exception handling

•  Language specified
by implementation

CS 5142 Cornell University
9/20/13

19

Perl Culture
Perl

•  Perl haikus and other poetry
print STDOUT q,
Just another Perl hacker,
unless $spring

•  Obfuscated Perl contest
$_ = "wftedskaebjgdpjgidbsmnjgc";
tr/a-z/oh, turtleneck Phrase Jar!/;
print;

•  perl.org, cpan.org, perlmonks.org, pm.org

CS 5142 Cornell University
9/20/13

20

Suggestions for Perl Practice

•  hw04 gets you points, but you may want
to do more at your own leasure

•  Sort CSV file by user-specified column
•  Pretty-print C code as HTML
•  Turn PID and PPID from ps into tree
•  Use Perl to translate gnuplot into VBA

code that draws a Powerpoint slide
•  Write a Perl poem

Perl

CS 5142 Cornell University
9/20/13

21

Last Slide
•  Pick up your graded homework and quiz
•  Today’s lecture

– Context
– Modules
– Object-oriented

Perl
– Scripting as glue

•  Next lecture
– AWK
– Prelim review

Administrative

CS 5142 Cornell University
9/20/13

22

Scopes and Visibility

… {… {…} …} …
(block)
(block)

 (compilation unit)

{… {…} …}
(block)

 (outer blocks)

{…}
(block)

(package)

Perl

•  Compilation unit = file, -e, or eval argument
•  Package = global named namespace

–  Can declare same package in multiple blocks,
or even in multiple compilation units

–  Only one package in effect at any point

caller of eval (if any)

Name lookup:

CS 5142 Cornell University
9/20/13

23

Perl
#!/usr/bin/perl
package p;
our $x = 'px';
{
 package q;
 our ($x, $y) = ('qx', 'qy');
 print "x ('qx' from block) $x \n";
 print "p::x ('px' qualified access) $p::x \n";
 print "q::x ('qx' qualified access) $q::x \n";
}
{
 package r::s; # name can include multiple qualifier levels
 our $x = 'rsx';
 {
 package q; # can reopen in different block, even different file
 our $z = 'qz';
 print "x ('rsx' block hides package) $x \n";
 print "y ('qy' disallowed by 'use strict') $y \n";
 print "z ('qz' from block) $z \n";
 print "q::x ('qx' qualified access) $q::x \n";
 print "r::s::x ('rsx' qualified access) $r::s::x\n";
 }
}
print "x ('px' from compilation unit) $x \n";
print "q::z ('qz' qualified access) $q::z \n";
print "r::s::x ('rsx' qualified access) $r::s::x\n";

Package Example

CS 5142 Cornell University
9/20/13

24

Typeglobs and Symbol Tables
•  Package p::q uses symbol table %p::q::

–  Symbol table entry $p::{'x'} is typeglob *p::x
•  Typeglob = symbol table entry

–  E.g., *x holds $x, @x, %x, …
–  *x{SCALAR} is the same as \$x,

and similarly for ARRAY, HASH, CODE, IO
–  *x{GLOB} is the same as *x
–  *x{PACKAGE} returns package containing x
–  *x{NAME} returns name of typeglob

•  Perl internally manipulates typeglobs to
implement features, e.g., function “use”

Perl

