
CS 5142 Cornell University 9/7/13 1

CSCI-GA.3033.003
Scripting Languages

6/7/2012
Textual data processing (Perl)

CS 5142 Cornell University 9/7/13 2

Announcements
Administrative

•  Homework 2 due Friday at 6pm.

•  First prelim 9/27, Review on 9/25

•  Additional TA:
– Theodoros Gkountouvas

•  Possible room change in the future:
–  Watch Piazza for announcements

CS 5142 Cornell University 9/7/13 3

Outline

•  Perl Basics

CS 5142 Cornell University 9/7/13 4

About Perl

•  Practical Extraction and Reporting Language
–  Regular expressions
–  String interpolation
–  Associative arrays

•  TIMTOWDI
–  There is more than one way to do it
–  Make easy jobs easy
– … without making hard jobs impossible
–  Pathologically Eclectic Rubbish Lister

Perl

CS 5142 Cornell University 9/7/13 5

Orthogonality
Concepts

Definition of
orthogonal

Language design
principle

Violation of
orthogonality

At right angles
(unrelated)

Uniform rules for
feature interaction

VBA object
assignments

Not redundant Few, but general,
features

VBA positional
vs. named args

Perl is diagonal rather than orthogonal:
 “If I walk from one corner of the park to another,
 I don’t walk due east and then due north. I go
 northeast.” [Larry Wall]
⇒ shortcut features even when not orthogonal

CS 5142 Cornell University 9/7/13 6

Related Languages

•  Predecessors: C, sed, awk, sh
•  Successors:

–  PHP (“PHP 1” = collection of Perl scripts)
–  Python, JavaScript (different languages, inspired

by Perl’s strengths + weaknesses)
•  Perl 5 (current version, since 1994)
•  Perl 6

–  Larry Wall has been talking about it since 2001
–  Evolved into a separate language

Perl

CS 5142 Cornell University 9/7/13 7

How to Write + Run Code
•  perl [-w] -e 'perl code'

–  “-w” flag produces warnings
•  perl [-w] script.pl
•  script.pl

–  Write the file in Vi or Emacs or …
–  chmod u+x script.pl

Makes script executable
–  #!/usr/bin/perl -w

In first line of script specifies interpreter
•  perl [-w] -d -e 42

–  Edit-eval-print loop (debug the script “42”)

Perl

CS 5142 Cornell University 9/7/13 8

Lexical Peculiarities

•  Single-line comments: #
•  Semicolon required after statements unless
{last; in; block}

•  Quotes around certain strings (bare words)
optional in certain cases (e.g., as hash key)

•  v-string: v13.10 = "\x{13}\x{10}"
•  Interpolation; pick-your-own-quotes;

Heredocs; POD (plain old documentation)
•  Many more…

Perl

CS 5142 Cornell University 9/7/13 9

Types
Perl

scalar file handle
(composite)

numeric string reference void array hash

int double function
reference

UNIVERSAL (other
references)

(blessed references)

CS 5142 Cornell University 9/7/13 10

Sigils, a.k.a. “Funny Characters”

•  Symbol that must appear in front of
variable, showing its type
– $=scalar, @=array, %=hash,
&=function, *=typeglob

– E.g., $a[0] is element 0 of array @a
•  Unlike shell, Perl requires sigil also on

left-hand side of assignment
• ${id} is the same as $id
•  Function sigil & not required for call

Perl

CS 5142 Cornell University 9/7/13 11

Variable Declarations
Perl

Implicit print $a + 1;
$b = 5;

Read undef if
non-existent

Local,
lexical scope

my $c;
my ($d,$e)=(3,4);

Global
used locally

sub f{
 our $g;
 print $g++
}

Hides locals;
unlimited
lifetime

Local,
dynamic scope

sub h{print $i;}
sub k{
 local $i=5; h
}

Can also
localize single
array/hash item

CS 5142 Cornell University 9/7/13 12

Static vs. Dynamic Scoping
Concepts

Static scoping Dynamic scoping
Bound in closest nesting
scope in program text

Bound in closest calling
function at runtime

#!/usr/bin/perl -w
$x = 's';
sub g {
 my $x = 'd';
 return h()
}
sub h {
 return $x
}
print g(), "\n"; #s
print $x, "\n"; #s

#!/usr/bin/perl -w
$x = 's';
sub g {
 local $x = 'd';
 return h()
}
sub h {
 return $x
}
print g(), "\n"; #d
print $x, "\n"; #s

CS 5142 Cornell University 9/7/13 13

Interpolation

•  Expansion of values embedded in string
•  Single-quoted string literal 'abcde'

–  Only interpolate \' and \\

•  Double-quoted string literal "abcde"
–  More escape sequences, e.g., \n
–  Variables only, starting with @ or $
–  Use curleys to delimit: "time ${hours}h"

•  Trick to interpolate arbitrary expressions
–  "… @{[expr]} …" or "… @{[scalar expr]} …"

Perl

CS 5142 Cornell University 9/7/13 14

O
pe

ra
to

rs

Pe
rl

(…), "…", `…`, print, sort, … L Terms, function call, quoting, list operators (leftward)

-> 2 L Dereference and member access

++, -- 1 N Auto-increment, auto-decrement

** 2 R Exponentiation

!, ~, \, +, - 1 R Negation (!, ~, -), reference (\),no-op (+)

=~, !~ 2 L Binding to regular expression pattern match

*, /, %, x 2 L Multiplicative (x is string repetition)

+, -, . 2 L Additive (. is string concatenation)

<<, >> 2 L Bitwise shift

eval, sqrt, -f, -e, … 1 N Named unary operators, file test operators

<, >, <=, >=, lt, gt, le, ge 2 N Relational (lt, gt, le, ge is for strings)

==, !=, <=>, eq, ne, cmp 2 N Equality (eq, ne, cmp is for strings) (<=>, cmp yield -1/0/1)

&, |, ^ 2 L Bitwise (not all same precedence)

&& 2 L Logical and (short-circuit)

||, // 2 L Logical or (||), Defined-or (//) (short-circuit)

.., ... 2 N Range (in list context) or bistable (in scalar context)

?: 3 R Ternary conditional

=, +=, -=, *=, … 2 R Assignment; return l-value of target

,, => 2 L List (in list context) or sequencing (in scalar context)

print, sort, … N List operators (rightward)

not, and, or, xor 2 R Logical (short-circuit; not all same precedence)

CS 5142 Cornell University 9/7/13 15

Operators: List vs. Named Unary

•  Different precedence rules
•  List operator (most user-defined functions)

–  High leftward, low rightward precedence
–  @a = (1,5,sort 9,2); print @a; #1529

•  Named unary operator
–  Lower than arithmetic, higher than comparison
–  @a = (1,5,sqrt 9,2); print @a; #1532

•  Call either one with parentheses
–  Highest precedence
–  @a = (1,5,sort(3+6),2); print @a; #1592

Perl

CS 5142 Cornell University 9/7/13 16

Input and Output
Perl

•  Output
–  print "Hello, world!";
–  print STDERR "boo!";
–  printf "sqrt(%.2f)=%.2f\n", 2, sqrt(2);

•  Input
–  $lineFromStdIn = <>;
–  open MYFILE, '<recipe' or die "$!";
–  $lineFromMyFile = <MYFILE>;
–  @allLines = <MYFILE>;

CS 5142 Cornell University 9/7/13 17

Arrays
•  Resizable
•  Literals: list @a=(1,3,5), range @b=2..4
•  Indexing: e.g. $a[1]

–  Zero-based; negative index counts from end
–  $#a returns last index of @a, in this case, 2
–  Write to non-existent index auto-vivifies

•  Free: undef @a, truncate: $#a=1
•  Array slice: using multiple indices, e.g.,
@a[0,2] or @a[1..2]

•  Using array in scalar context: returns length
–  scalar(@a); # 3 = size

Perl

Perl Poetry

CS 5142 Cornell University 9/7/13 18

Perl

#!/usr/bin/perl –w
while ($leaves > 1) {
 $root = 1;
}
foreach($lyingdays{‘myyouth’}) {
 sway($leaves, $flowers);
}
while ($i > $truth) {
 $i--;
}
sub sway {
 my ($leaves, $flowers) = @_;
 die unless $^O =~ /sun/i;
}

Though leaves are many, the root is one;
Through all the lying days of my youth
I swayed my leaves and flowers in the sun;
Now I may wither into the truth

Wayne Myers port of the Yeats poem,
“The Coming Of Wisdom with Time”

CS 5142 Cornell University 9/7/13 19

Last Slide

•  Today’s lecture
– Basics of Perl

•  Nest lecture
– Associative arrays
– Regular

expressions

Administrative

