CSCI-GA.3033.003
Scripting Languages

6/7/2012
Textual data processing (Perl)

CS 5142 Cornell University 9/7/13

Administrative

Announcements

Homework 2 due Friday at 6pm.

First prelim 9/27, Review on 9/25

Additional TA:
— Theodoros Gkountouvas

Possible room change in the future:
— Watch Piazza for announcements

CS 5142 Cornell University 9/7/13

Outline

 Perl Basics

CS 5142 Cornell University 9/7/13

 Perl
About Perl

* Practical Extraction and Reporting Language
— Regular expressions
— String interpolation
— Associative arrays

 TIMTOWDI

— There is more than one way to do it

— Make easy jobs easy

— ... without making hard jobs impossible
— Pathologically Eclectic Rubbish Lister

CS 5142 Cornell University 9/7/13

Orthogonality

Definition of | Language design Violation of
orthogonal principle orthogonality

At right angles| Uniform rules for VBA object
(unrelated) | feature interaction assignments

Not redundant| Few, but general, VBA positional
features vS. named args

Perl is diagonal rather than orthogonail:
“If I walk from one corner of the park to another,
[don’t walk due east and then due north. I go
northeast.” [Larry Wall]
=> shortcut features even when not orthogonal

CS 5142 Cornell University 9/7/13

Related Languages

Predecessors: C, sed, awk, sh

Successors:

— PHP (“PHP 17 = collection of Perl scripts)

— Python, JavaScript (different languages, inspired
by Perl’ s strengths + weaknesses)

Perl 5 (current version, since 1994)

Perl 6

— Larry Wall has been talking about it since 2001
— Evolved into a separate language

CS 5142 Cornell University 9/7/13

 Perl
How to Write + Run Code

« perl [-w] —-e 'perlcode'
— “-w’ flag produces warnings
« perl [-w]| script.pl
e script.pl
— Write the file in Vi or Emacs or ...

— chmod u+x script.pl
Makes script executable

- #!'/usr/bin/perl -w
In first line of script specifies interpreter

« perl [-w] -d -e 42
— Edit-eval-print loop (debug the script “42")

CS 5142 Cornell University 9/7/13

Lexical Peculiarities

« Single-line comments: #

« Semicolon required after statements unless
{last; in; block}

* Quotes around certain strings (bare words)
optional in certain cases (e.g., as hash key)

e v-string: v13.10 = "\x{13}\x{10}"

 |nterpolation; pick-your-own-quotes;
Heredocs; POD (plain old documentation)

 Many more...

CS 5142 Cornell University 9/7/13

Types

composite)
scalar file handle

numeric string void reference array hash

nt double unction NERsaL (other
reference A\ references)

(blessed references)

CS 5142 Cornell University 9/7/13 9

Sigils, a.k.a. “Funny Characters”

« Symbol that must appear in front of
variable, showing its type

— $=scalar, @=array, $=hash,
&=function, *=typeglob

—E.g., $a[0] is element 0 of array QRa

* Unlike shell, Perl requires sigil also on
left-nand side of assignment

e ${id} Is the same as $id
* Function sigil & not required for call

CS 5142 Cornell University 9/7/13 10

Variable Declarations

Implicit

print $a + 1;

Read undef if

b = 5; non-existent
Local, my $c;
lexical scope my ($d,$e)=(3,4);

sub f{ : _
Global our $q: Hld_e§ locals;
used locally print $g++ unlimited

} lifetime

sub h{print $i;}
Local, sub ki Can also

dynamic scope

local $i=5; h
}

CS 5142 Cornell University 9/7/13

localize single
array/hash item

11

Static vs. Dynamic Scoping

Static scoping

Dynamic scoping

Bound in closest nesting
scope in program text

Bound in closest calling
function at runtime

#!'/usr/bin/perl -w
Sx = 's';
sub g {
my $x = 'd';
return h()
}
sub h {
return $x

}

print g(),
print $x,

" \nn ; #é
" \nn ; #S

#!'/usr/bin/perl -w
$x = 's';
sub g {
local $x = 'd’';
return h()
}
sub h {
return $x

}

print g(),
print $x,

" \nn ; #g.
" \nn ; #S

CS 5142 Cornell University 9/7/13

12

Interpolation

« Expansion of values embedded in string

Single-quoted string literal 'abcde’
— Only interpolate \ ' and \\

Double-quoted string literal "abcde"

— More escape sequences, e.g., \n

— Variables only, starting with @ or $

— Use curleys to delimit: "time ${hours}h"
Trick to interpolate arbitrary expressions

- ". @{[expr]l} .."or".. @{[scalar expr]l} .."

CS 5142 Cornell University 9/7/13 13

Operators

(..),"..", .., print, sort, .. L | Terms, function call, quoting, list operators (leftward)
-> 2 | L | Dereference and member access
++, —-- 1 | N [Auto-increment, auto-decrement
* % 2 | R | Exponentiation
Vo~ \, + - 1 | R | Negation (!, ~, -), reference (\),no-op (+)
=~, I~ 2 | L | Binding to regular expression pattern match
* /%, % 2 | L | Multiplicative (x is string repetition)
+, -, 2 | L | Additive (. is string concatenation)
<<, >> 2 | L | Bitwise shift
eval, sqrt, -£f, -e, ... 1 N | Named unary operators, file test operators
<, >, <=, >=, 1t, gt, 1le, ge 2 | N | Relational (1t, gt, 1e, ge is for strings)
==, !=, <=>, eq, ne, cmp 2 | N | Equality (eq, ne, cmp is for strings) (<=>, cmp yield -1/0/1)
& |, 2 | L | Bitwise (not all same precedence)
&& 2 | L | Logical and (short-circuit)
I, // 2 | L | Logical or (| |), Defined-or (//) (short-circuit)
: 2 | N [Range (in list context) or bistable (in scalar context)
?: 3 | R | Ternary conditional
=, +=, -=, *=, 2 | R | Assignment; return I-value of target
,, => 2 | L | List (in list context) or sequencing (in scalar context)
print, sort, .. N | List operators (rightward)
not, and, or, xor 2 | R | Logical (short-circuit; not all same precedence)

CS 5142 Cornell University 9/7/13

14

Operators: List vs. Named Unary

Different precedence rules

List operator (most user-defined functions)

— High leftward, low rightward precedence

- @a = (1,5,sort 9,2); print @a; #1529
Named unary operator

— Lower than arithmetic, higher than comparison

- @a = (1,5,sgrt 9,2); print Qa; #1532
Call either one with parentheses

— Highest precedence

-~ @a = (1,5,s0rt(3+6),2); print Qa; #1592

CS 5142 Cornell University 9/7/13 15

_ Perl
Input and Output

* Output

— print "Hello, world!";

— print STDERR "boo!";

— printf "sqrt(%.2£)=%.2f\n", 2, sqrt(2);
* Input

— S$lineFromStdIn = <>;

— open MYFILE, '<recipe' or die "$!'";

— $lineFromMyFile = <MYFILE>;

— @alllLines = <MYFILE>;

CS 5142 Cornell University 9/7/13 16

Arrays

Resizable

_iterals: list @a=(1,3,5), range @b=2. .4
ndexing: e.qg. $Sa[1]

— Zero-based; negative index counts from end

— $#a returns last index of @a, in this case, 2
— Write to non-existent index auto-vivifies

Free: undef Qa, truncate: $#a=1
Array slice: using multiple indices, e.g.,
@a[0,2] or@a[l. .2]
Using array in scalar context: returns length
— scalar(@a); # 3 = size
CS 5142 Cornell University 9/7/13 17

__ Perl
Perl Poetry

#!/usr/bin/perl -w : _
while ($leaves > 1) { Though leaves are many, the root is one,

$Sroot = 1; Through all the lying days of my youth
} | swayed my leaves and flowers in the sun;

foreach ($lyingdays{ ‘myyouth’}) { Now | may wither into the truth
sway ($leaves, $flowers);

}
while ($i > $truth) {

$i--;
}

sub sway ({
my (Sleaves, $flowers) = Q@ ;
die unless $70 =~ /sun/i;

Wayne Myers port of the Yeats poem,
“The Coming Of Wisdom with Time”

CS 5142 Cornell University 9/7/13 18

| ast Slide

« Today' s lecture * Nest lecture
— Basics of Perl — Associative arrays

— Regular
expressions

CS 5142 Cornell University 9/7/13 19

